Your Transport – Carbon Free in 2100

Detailed scenarios looking at how all transport of people and goods can be zero carbon by 2100

WHO: L.D.D. Harvey, Department of Geography, University of Toronto, Canada

WHAT: Scenarios across all sectors of transport for people and goods and how they can be zero carbon by the year 2100

WHEN: March 2013

WHERE: Energy Policy, Vol. 54

TITLE: Global climate-oriented transportation scenarios (subs req.)

We need to decarbonise our economy, but what does that actually look like? What do our transit and transport systems look like with zero carbon? Are we all going back to the horse and cart? I don’t think my apartment can fit a horse!

This very very detailed paper from the University of Toronto looked at what might happen, and the general gist of it is that first we need to work really hard to increase the efficiency of all our transport. Once we’ve gotten the energy intensity as low as possible on everything, we need to switch the remaining energy requirements over to different fuel sources (bio fuels, hydrogen fuel cells, electric).

For this paper, the globe was divided into ten socio-economic regions that had different per capita incomes, activity levels, energy intensities, potential for future population growth, income growth and energy levels. Each segment was then analysed for the per capita travel of light duty vehicles (cars, SUVs, pickup trucks), air travel, rail travel and other modes of transport. To further complicate the calculations, there were low growth and high growth scenarios looked at as well.

The data was worked from 2005 and extrapolated out to 2100 and if this kind of large scale number crunching really gets you going, all the spreadsheets that the researcher used are available online here (Climate-OrientedTransportScenarios) for you to do your own zero carbon transport scenarios (thanks to Dr. Harvey for making this available open access).

Energy demand scenarios (from paper)

Energy demand scenarios (from paper)

Interestingly, growth in per capita travel relative to GDP growth has halted in several industrialised countries, which makes sense when you think about it – beyond a certain point you end up with more money to travel than time to do it in.

In terms of climate change, the paper assumes we’re able to stabilise the CO2 concentration in the atmosphere at 450ppm. The paper also talks a lot about peak oil and the effect it could have on resource prices and the availability of fossil fuels as fuel. Given that we need to leave 80% of the known fossil fuel reserves on the planet in the ground, I’m not so sure how much effect peak oil may have, but you never know – we could be suicidal enough to try and burn all of it.

Cars

Improvements need to be made reducing the weight of cars, improving the engine efficiency and the aerodynamics. Passenger space will increase so we can transport more people per car, air conditioning becomes more efficient (and necessary in some places because of climate change) and hybrid electric cars replace fossil fuel cars for urban driving. Fuel consumption drops from 10.4L/100km in 2005 to 1-2L/100km (of a biofuel) in 2100.

While I was really hoping the paper would tell me of the demise of ugly giant pickup trucks, sadly it looks like we may keep them and they’ll become hydrogen fuel cell monster trucks.

Buses

Buses will increase engine efficiency and ridership. Many buses are already diesel or electric, but the diesel efficiency will become around 50% and the hydrogen fuel cell buses will have 60% engine efficiency.

Passenger Rail

Trains will be electrified where they can be, and efficient diesel (becoming biofuel) where they can’t be electrified.

Air

The efficiency of planes is expected to increase by 20% from 2000 – 2020, with a 1% per year efficiency gain every year after that. The International Civil Aviation Organisation (ICAO) has already announced they’re aiming for 2% per year efficiency to 2050, so this one isn’t too far from reality. However, the paper points out that this will probably require a radical change in aircraft design, and a possible switch to plant oils or animal fat biomass-based fuel beyond that.

Freight

Freight trains need to reduce their weight, improve their engine efficiency, develop diesel-electric hybrid drive trains and get clever about load configuration to maximise efficiency. The energy requirement of tractors and other long haul trailers also needs to be reduced.

Marine freight is an interesting one. The paper points out that the majority of the world’s shipping is currently oil, coal and other bulk materials like iron ore. Obviously, none of this will need to be shipped anywhere in a zero carbon world, because we won’t need it. Mostly, marine freight will reduce the energy intensity of ships, and future transport will be made up of 60% container ships, 20% bulk ships, 10% general cargo ships and 10% biofuel supertankers.

Green Scenarios

The paper also looks at some ‘Green Scenarios’ which are the ones where we actually get ourselves into gear seriously to decarbonise (and hopefully stop having the endless debate about whether climate change is ‘real’).

The green scenarios have additional reduced total passenger travel with truck and air travel compensated by rail and other travel modes. There’s also an extra 20% decrease in global freight, which makes me hope people become more minimalist and have less junk in this future scenario? (I can dream!)

Initially, the greatest demand for biofuels are cars, but by 2035 freight is the biggest biofuel user, so maybe we’ve started to also become more clever in the way we plan urban areas with density and rapid transit too? (I think I like this future planet!)

Fuel demand scenarios (from paper)

Fuel demand scenarios (from paper)

The paper concludes that we need new urban development with higher density, more walkable, bikable and transit friendly options as well as making energy intensity reductions in all forms of transport and then switching the remaining fossil fuels to hydrogen or biofuel. This will go hand in hand with engine efficiency increases as well as battery technology improvements.

The key thing I took away from this paper is that we need to be doing ALL of this. We can’t just drive an electric car and still have our books from Amazon.com shipped here on an old, inefficient cargo ship belching fossil fuels. We also can’t fix one single transport sector and wash our hands of it saying ‘there- I fixed climate change!’

Climate change will affect everything, regardless of whether we actually do something about it or not. So we need to change the way we do everything to do it without carbon.

Much ado about phosphorus

‘Life can multiply until all the phosphorus has gone and then there is an inexorable halt which nothing can prevent’ – Isaac Asimov, 1974

WHO: K. Ashley, D. Mavinic, Department of Civil Engineering, Faculty of Applied Science, University of British Columbia, Vancouver, BC, Canada
D. Cordell, Institute for Sustainable Futures, University of Technology, Sydney, Australia

WHAT: A brief history of phosphorus use by humans and ideas on how we can prevent the global food security risk of ‘Peak Phosphorus’

WHEN: 8 April 2011

WHERE: Chemosphere Vol. 84 (2011) 737–746

TITLE: A brief history of phosphorus: From the philosopher’s stone to nutrient recovery and reuse (subs req.)

Phosphorus can be found on the right hand side of your periodic table on the second row down underneath Nitrogen. It’s one of those funny elements that we all need to live and survive and grow things, but is also highly reactive, very explosive and toxic.

It’s in our DNA – in the AGCT bases that connect to form the double helix structure of DNA, the sides of the ladder are held together by phosphodiester bonds. Phosphorus is literally helping to hold us together.

Phosphodiester bonds in DNA (from Introduction to DNA structure, Richard B. Hallick, U Arizona)

Phosphodiester bonds in DNA (from Introduction to DNA structure, Richard B. Hallick, U Arizona)

Phosphorus can be pretty easily extracted from human urine, which was what German alchemist Henning Brandt did in the 1660s in an attempt to create the Philosopher’s Stone which would be able to turn base metals into gold. No seriously, apparently he was committed enough to the idea to distill 50 buckets of his own pee to do this!

What do alchemy, DNA, and human pee have to do with a scientific paper? Well these researchers were looking at how we’ve previously used phosphorus, why it is that we’re now running out of it and what we can learn from history to try and avoid a global food security risk.

Phosphorus comes in three forms – white, black and red. The phosphorus that is mined for fertilizer today is apatite rock containing P2O5 and has generally taken 10 – 15million years to form. However, in traditional short term human thinking, the fact that it takes that long for the rocks to form didn’t stop people from mining it and thinking it was an ‘endless’ resource (just like oil, coal, forests, oceans etc.).

The paper states that originally, phosphorus was used for ‘highly questionable medicinal purposes’ and then doesn’t detail what kinds of whacky things it was used for (boo!). Given the properties of white phosphorus; it’s highly reactive and flammable when exposed to the air, can spontaneously combust and is poisonous to humans, the mind boggles as to what ‘medicinal’ uses phosphorus had.

The major use of phosphorus is as an agricultural fertilizer, which used to be achieved through the recycling of human waste and sewage pre-industrialisation. However, with 2.5million people living in Victorian-era London, the problems of excess human waste become unmanageable and led to all kinds of nasty things like cholera and the ‘Great Stink’ of the Thames in 1858 that was so bad that it shut down Parliament.

This led to what was called the ‘Sanitary Revolution’ aka the invention of flush toilets and plumbing on a large scale. This fundamentally changed the phosphorus cycle – from a closed loop of localised use and reuse to a more linear system as the waste was taken further away.

After the Second World War, the use of mined mineral phosphorus really took off – the use of phosphorus as a fertilizer rose six fold between 1950-2000 – and modern agricultural processes are now dependent on phosphorus based fertilizers. This has led to major phosphorus leakage into waterways and oceans from agricultural runoff creating eutrophication and ocean deadzones from excess phosphorus.

Eutrophication in the sea of Azov, south of the Ukraine  (SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE)

Eutrophication in the sea of Azov, south of the Ukraine
(SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE)

The problem here is, that we’ve switched from a closed loop system where the waste from the farm house goes into the farm yard and all the phosphorus can recycle, to a linear system where the phosphorus gets mined, used as fertilizer and much of it runs off into the ocean. It’s not even a very efficient system – only a fifth of the phosphorus mined for food production actually ends up in the food we eat.

The problem that we’re now facing is the long term ramifications of this new system where phosphorus has become a scarce global resource and we’ve now been forced to start mining the rocks that have lower quality phosphorus with higher rates of contaminants and are more difficult to access. We’re down to the tar sands equivalent of minable phosphorus, most of which is found in only five countries; Morocco, China, the USA, Jordan and South Africa. Maybe they can be the next OPEC cartel for phosphorus?

Peak phosphorus is likely to happen somewhere between 2030 and 2040, which is where the scary link to climate change comes in. The researchers cheerfully call phosphorus shortages the ‘companion show-stopper to climate change’, by which they mean that soils will start to run out of the nutrients they need at about the same time that extended droughts from climate change will be diminishing crop yields and we’ll have about 9 billion people to scramble to feed.

Basically, a phosphorus shortage is something that we can easily avoid through better and more efficient nutrient recycling, but it’s something that will kick us in the ass once we’re already struggling to deal with the consequences of climate change. The paper states that we need to start re-thinking our ‘western style’ of sewage treatment to better recover water, heat, energy, carbon, nitrogen and phosphorus from our waste systems. This doesn’t mean (thankfully) having to return to a middle ages style of living – it means having cities that are innovative enough about their municipal systems (I was surprised to find out that sewage treatment is one of the most expensive and energy intensive parts of public infrastructure).

The False Creek Neighbourhood Energy Utility in Vancouver

The False Creek Neighbourhood Energy Utility in Vancouver

In Vancouver, we’re already starting to do that with the waste cogeneration system at Science World and the False Creek Neighbourhood Energy Utility that produces energy from sewer heat.

It’s pretty logical; we need to re-close the loop on phosphorus use and we need to do it sensibly before our failure to stop burning carbon means ‘Peak Phosphorus’ becomes the straw that breaks the camel’s proverbial back.

Pandora’s Permafrost Freezer

What we know about permafrost melt is less than what we don’t know about it. So how do we determine the permafrost contribution to climate change?

WHO: E. A. G. Schuur, S. M. Natali, C. Schädel, University of Florida, Gainesville, FL, USA
B. W. Abbott, F. S. Chapin III, G. Grosse, J. B. Jones, C. L. Ping, V. E. Romanovsky, K. M. Walter Anthony University of Alaska Fairbanks, Fairbanks, AK, USA
W. B. Bowden, University of Vermont, Burlington, VT, USA
V. Brovkin, T. Kleinen, Max Planck Institute for Meteorology, Hamburg, Germany
P. Camill, Bowdoin College, Brunswick, ME, USA
J. G. Canadell, Global Carbon Project CSIRO Marine and Atmospheric Research, Canberra, Australia
J. P. Chanton, Florida State University, Tallahassee, FL, USA
T. R. Christensen, Lund University, Lund, Sweden
P. Ciais, LSCE, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
B. T. Crosby, Idaho State University, Pocatello, ID, USA
C. I. Czimczik, University of California, Irvine, CA, USA
J. Harden, US Geological Survey, Menlo Park, CA, USA
D. J. Hayes, M. P.Waldrop, Oak Ridge National Laboratory, Oak Ridge, TN, USA
G. Hugelius, P. Kuhry, A. B. K. Sannel, Stockholm University, Stockholm, Sweden
J. D. Jastrow, Argonne National Laboratory, Argonne, IL, USA
C. D. Koven, W. J. Riley, Z. M. Subin, Lawrence Berkeley National Lab, Berkeley, CA, USA
G. Krinner, CNRS/UJF-Grenoble 1, LGGE, Grenoble, France
D. M. Lawrence, National Center for Atmospheric Research, Boulder, CO, USA
A. D. McGuire, U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska, Fairbanks, AK, USA
J. A. O’Donnell, Arctic Network, National Park Service, Fairbanks, AK, USA
A. Rinke, Alfred Wegener Institute, Potsdam, Germany
K. Schaefer, National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
J. Sky, University of Oxford, Oxford, UK
C. Tarnocai, AgriFoods, Ottawa, ON, Canada
M. R. Turetsky, University of Guelph, Guelph, ON, Canada
K. P. Wickland, U.S. Geological Survey, Boulder, CO, USA
C. J. Wilson, Los Alamos National Laboratory, Los Alamos, NM, USA
 S. A. Zimov, North-East Scientific Station, Cherskii, Siberia

WHAT: Interviewing and averaging the best estimates by world experts on how much permafrost in the Arctic is likely to melt and how much that will contribute to climate change.

WHEN: 26 March 2013

WHERE: Climactic Change, Vol. 117, Issue 1-2, March 2013

TITLE: Expert assessment of vulnerability of permafrost carbon to climate change (open access!)

We are all told that you should never judge a book by its cover, however I’ll freely admit that I chose to read this paper because the headline in Nature Climate Change was ‘Pandora’s Freezer’ and I just love a clever play on words.

So what’s the deal with permafrost and climate change? Permafrost is the solid, permanently frozen dirt/mud/sludge in the Arctic that often looks like cliffs of chocolate mousse when it’s melting. The fact that it’s melting is the problem, because when it melts, the carbon gets disturbed and moved around and released into the atmosphere.

Releasing ancient carbon into the atmosphere is what humans have been doing at an ever greater rate since we worked out that fossilised carbon makes a really efficient energy source, so when the Arctic starts doing that as well, it’s adding to the limited remaining carbon budget our atmosphere has left. Which means melting permafrost has consequences for how much time humanity has left to wean ourselves off our destructive fossil fuel addiction.

Cliffs of chocolate mousse (photo: Mike Beauregard, flickr)

Cliffs of chocolate mousse (photo: Mike Beauregard, flickr)

 How much time do we have? How much carbon is in those cliffs of chocolate mousse? We’re not sure. And that’s a big problem. Estimates in recent research think there could be as much as 1,700 billion tonnes of carbon stored in permafrost in the Arctic, which is much higher than earlier estimates from research in the 1990s.

To give that very large number some context, 1,700 billion tonnes can also be called 1,700 Gigatonnes, which should ring a bell for anyone who read Bill McKibben’s Rolling Stone global warming math article. The article stated that the best current estimate for humanity to have a shot at keeping global average temperatures below a 2oC increase is a carbon budget of 565Gt. So if all the permafrost melted, we’ve blown that budget twice.

What this paper did, was ask the above long list of experts on soil, carbon in soil, permafrost and Arctic research three questions over three different time scales.

  1. How much permafrost is likely to degrade (aka quantitative estimates of surface permafrost degradation)
  2. How much carbon it will likely release
  3. How much methane it will likely release

They included the methane question because methane has short term ramifications for the atmosphere. Methane ‘only’ stays in the atmosphere for around 100 years (compared to carbon dioxide’s 1000 plus years) and it has 33 times the global warming potential (GWP) of CO2 over a 100 year period. So for the first hundred years after you’ve released it, one tonne of methane is as bad as 33 tonnes of CO2. This could quickly blow our carbon budgets as we head merrily past 400 parts per million of CO2 in the atmosphere from human forcing.

The time periods for each question were; by 2040 with 1.5-2.5oC Arctic temperature rise (the Arctic warms faster than lower latitudes), by 2100 with between 2.0-7.5oC temperature rise (so from ‘we can possibly deal with this’ to ‘catastrophic climate change’), and by 2300 where temperatures are stable after 2100.

The estimates the experts gave were then screened for level of expertise (you don’t want to be asking an atmospheric specialist the soil questions!) and averaged to give an estimate range. For surface loss of permafrost under the highest warming scenario, the results were;

  1. 9-16% loss by 2040
  2. 48-63% loss by 2100
  3. 67-80% loss by 2300

Permafrost melting estimates for each time period over four different emissions scenarios (from paper)

Permafrost melting estimates for each time period over four different emissions scenarios (from paper)

Ouch. If we don’t start doing something serious about reducing our carbon emissions soon, we could be blowing that carbon budget really quickly.

For how much carbon the highest warming scenario may release, the results were;

  1. 19-45billion tonnes (Gt) CO2 by 2040
  2. 162-288Gt CO2 by 2100
  3. 381-616Gt CO2 by 2300

Hmm. So if we don’t stop burning carbon by 2040, melting permafrost will have taken 45Gt of CO2 out of our atmospheric carbon budget of 565Gt. Let’s hope we haven’t burned through the rest by then too.

However, if Arctic temperature rises were limited to 2oC by 2100, the CO2 emissions would ‘only’ be;

  1. 6-17Gt CO2 by 2040
  2. 41-80Gt CO2 by 2100
  3. 119-200Gt CO2 by 2300

That’s about a third of the highest warming estimates, but still nothing to breathe a sigh of relief at given that the 2000-2010 average annual rate of fossil fuel burning was 7.9Gt per year. So even the low estimate has permafrost releasing more than two years worth of global emissions, meaning we’d have to stop burning carbon two years earlier.

When the researchers calculated the expected methane emissions, the estimates were low. However, when they calculated the CO2 equivalent (CO2e) for the methane (methane being 33 times more potent than CO2 over 100 years), they got;

  1. 29-60Gt CO2e by 2040
  2. 250-463Gt CO2e by 2100
  3. 572-1004Gt CO2e by 2300

Thankfully, most of the carbon in the permafrost is expected to be released as the less potent carbon dioxide, but working out the balance between how much methane may be released into the atmosphere vs how much will be carbon dioxide is really crucial for working out global carbon budgets.

The other problem is that most climate models that look at permafrost contributions to climate change do it in a linear manner where increased temps lead directly to an increase in microbes and bacteria and the carbon is released. In reality, permafrost is much more dynamic and non-linear and therefore more unpredictable, which makes it a pain to put into models. It’s really difficult to predict abrupt thaw processes (as was seen over 98% of Greenland last summer) where ice wedges can melt and the ground could collapse irreversibly.

These kinds of non-linear processes (the really terrifying bit about climate change) made the news this week when it was reported that the Alaskan town of Newtok is likely to wash away by 2017, making the townspeople the first climate refugees from the USA.

The paper points out that one of the key limitations to knowing exactly what the permafrost is going to do is the lack of historical permafrost data. Permafrost is in really remote hard to get to places where people don’t live because the ground is permanently frozen. People haven’t been going to these places and taking samples unlike more populated areas that have lengthy and detailed climate records. But if you don’t know how much permafrost was historically there, you can’t tell how fast it’s melting.

The key point from this paper is that even though we’re not sure exactly how much permafrost will contribute to global carbon budgets and temperature rise, this uncertainty alone should not be enough to stall action on climate change.

Yes, there is uncertainty in exactly how badly climate change will affect the biosphere and everything that lives within it, but currently our options range from ‘uncomfortable and we may be able to adapt’ to ‘the next mass extinction’.

So while we’re working out exactly how far we’ve opened the Pandora’s Freezer of permafrost, let’s also stop burning carbon. 

Wind Power Kicks Fossil Power Butt

What if you ran the numbers for wind power replacing all fossil fuel and nuclear electricity in Canada? How could it work? How much would it cost?

WHO:  L.D. Danny Harvey, Department of Geography, University of Toronto, Canada

WHAT: Mapping and calculating the potential for wind electricity to completely replace fossil fuel and nuclear electricity in Canada

WHEN: February 1st, 2013

WHERE: Energy Vol. 50, 1 February 2013

TITLE: The potential of wind energy to largely displace existing Canadian fossil fuel and nuclear electricity generation (subs req.)

As a kid, I really loved the TV series Captain Planet. I used to play it in the school yard with my friends and I always wanted to be the one with the wind power. Mostly because my favourite colour is blue, but also because I thought the girl with the wind power was tough.

Go Planet! Combining the power of wind, water, earth, fire and heart (Wikimedia commons)

Go Planet! Combining the power of wind, water, earth, fire and heart (Wikimedia commons)

What’s my childhood got to do with this scientific paper? Well, what if you looked at the Canadian Wind Energy Atlas and worked out whether we could harness the power of wind in Canada to replace ALL fossil fuel and nuclear electricity? How would you do it? How much would it cost? That’s what this researcher set out to discover (in the only paper I’ve written about yet that has a single author!)

Refreshingly, the introduction to the paper has what I like to call real talk about climate change. He points out that the last time global average temperatures increased by 1oC, sea levels were 6.6 – 9.4m higher, which means ‘clearly, large and rapid reductions in emissions of CO2 and other greenhouse gases are required on a worldwide basis’.

Of global greenhouse gas emissions electricity counts for about 25%, and while there have been studies in the US and Europe looking at the spacing of wind farms to reduce variability for large scale electricity generation, no-one has looked at Canada yet.

So how does Canada stack up? Really well. In fact, the paper found that Canada has equivalent wind energy available for many times the current demand for electricity!

The researcher looked at onshore wind and offshore wind for 30m, 50m and 80m above the ground for each season to calculate the average wind speed and power generation.  Taking into account the wake effect of other turbines and eliminating areas that can’t have wind farms like cities, mountains above 1,600m elevation (to avoid wind farms on the Rocky Mountains), shorelines (to avoid wind farms on your beach) and wetlands, the paper took the Wind Energy Atlas and broke the map into cells.

For calculating your wind farm potential there are generally three options; you can maximise the electricity production, maximise the capacity factor, or minimise the cost of the electricity. The paper looked at all three options and found that the best overall option (which gives you a better average cost in some cases) was to aim for maximum capacity.

Using wind data and electricity demand data from 2007, the researcher ran the numbers. In 2007, the total capacity of fossil fuel and nuclear electricity was 49.0GW (Gigawatts), or 249.8TWh (Terrawatt hours) of generation. This is 40% of the total national electricity capacity for Canada of 123.9GW or 616.3TWh generation.

To deal with the issue of wind power being intermittent, the paper noted that there’s already the storage capacity for several years electricity through hydro in Quebec and Manitoba, as well as many other options for supply-demand mismatches (which this paper doesn’t address) making a national wind electricity grid feasible.

To run the numbers, the country was split into 5 sectors and starting with the sector with the greatest wind energy potential, the numbers were run until a combination was found where the wind energy in each sector met the national fossil fuel and nuclear requirements.

Wind farms required in each sector to provide enough electricity to completely replace the fossil fuel and nuclear power used in 2007 (from paper)

Wind farms required in each sector to provide enough electricity to completely replace the fossil fuel and nuclear power used in 2007 (from paper)

Once the researcher worked out that you could power the whole country’s fossil fuel and nuclear electricity with the wind energy from any sector, he looked at minimising costs and meeting the demand required for each province.

He looked at what size of wind farm would be needed, and then calculated the costs for infrastructure (building the turbines) as well as transmission (getting the electricity from the farm to the demand). Some offshore wind in BC, Hudson Bay, and Newfoundland and Labrador, combined with some onshore wind in the prairies and Quebec and that’s all we need.

The cost recovery for the investment on the infrastructure was calculated for 20 years for the turbines and 40 years for the transmission lines. The paper found that minimising transmission line distance resulted in the largest waste generation in winter, but smallest waste in the summer, however overall, the best method was to aim for maximising the capacity factor for the wind farms.

But the important question – how much would your power cost? On average, 5-7 cents per kWh (kilowatt hour), which is on par with the 7c/kWh that BC Hydro currently charges in Vancouver. Extra bonus – wind power comes without needing to mine coal or store radioactive nuclear waste for millions of years!

Estimated wind power costs for Canada (from paper)

Estimated wind power costs for Canada (from paper)

Some more food for thought – the researcher noted that the estimated cost for coal fired electricity with (still unproven) carbon capture and storage technology is likely to be around 9c/kWh, while the current cost for nuclear generated electricity is between 10-23c/kWh. Also, the technical capacity factor for turbines is likely to increase as the technology rapidly improves, which will reduce the cost of producing wind electricity all over again.

This is all great news – Canada has the wind energy and the potential to build a new industry to not only wean ourselves off the fossil fuels that are damaging and destabilising our atmosphere, but to export that knowledge as well. We can be an energy superpower for 21st Century fuels, not fossil fuels. I say let’s do it!