Hot Enough Yet? Warming in Western North America

How much and in what ways has the western part of North America warmed from climate change between 1950 and 2005?

WHO: Evan L. J. Booth, James M. Byrne and Dan L. Johnson, Water and Environmental Sciences, University of Lethbridge, Alberta, Canada

WHAT: Collating all of the weather station data from North America west of the Mississippi River and looking at the long term trends.

WHEN: 13 December 2012

WHERE: International Journal of Climatology (Int. J. Climatol.) Vol. 32, Issue 15 (2012)

TITLE: Climatic changes in western North America, 1950–2005

As we all know, climate change is a global problem with regionally specific impacts. How the climate changes will depend on what your local climate was originally like. So how much has the western end of North America changed from 1950 to 2005? That’s what these researchers in Alberta set out to discover.

Firstly, for this research paper their area of western North America is more than just the Pacific Northwest. They decided to go with everything west of the Mississippi River in the USA and everything west of Manitoba in Canada, which is pretty diverse in terms of climate ranging from desert to mountains to prairies.

Climate study regions (from paper) and Google maps (for geographic locations)

Climate study regions (from paper) and Google maps (for geographic locations)

The researchers wanted to look at 50 years worth of data so that they could take out the natural variations like El Niño and La Niña years as well as the Pacific Decadal Oscillation and just focus on the human-caused effects of warming (aka anthropogenic warming for those who like big words).

The researchers looked at several different climate indicators. They counted the number of frost days, the length of the growing season, number of warm days and warm nights, number of wet days (>5mm of rain), very wet days (wetter than >95% of all the other days), daily rain intensity, and annual rain totals.

They noted that while climate change will definitely increase the intensity of the hydrological cycle, the future trends of rain (where it will be, how much there will be) are much more difficult to predict. However, the overall trend found was for rain increasing in the Pacific Northwest (sorry Vancouverites!) more than other areas.

Another interesting thing they found was that natural variability in climate may be masking the effects of climate change in Canada more than in the USA, given the large number of extreme weather events recently observed in the US compared with relatively few extreme events in Canada. Which doesn’t mean we’re getting off scot-free Canada, it means climate change is coming for us later!

There were 490 weather stations that contributed data to the paper, which meant for some massive number crunching, added to the fact that they had to develop an additional computer program to convert all the US measurements into metric (Dear USA, please join the rest of the world and go metric!).

As you can see from the map above, the area was broken down into six different regions and analysed for climate trends. The results were:

Pacific Northwest

The Pacific Northwest saw a significant decrease in frost days at a rate of 2.4 days/decade and a significant increase in warm nights. There was a general increasing trend for all the other measurements – the growing season was extended, and all the rain indicators went up (yeah, winter really is getting wetter Vancouver). The researchers noted that the Pacific Northwest has experienced ‘significant warming’ over the 50 year period, and that the reduction in frost days has severe consequences for Pine Beetle infestations and increasing wildfires.

Frost days: significantly decreasing (from paper)

Frost days: significantly decreasing (from paper)

The one exception to the rule was Oregon, where a significant warm and dry patch in the southern part of the state is a sign of the Californian desert climate moving north as the temperature increases.

Rain totals: Dry patch over Oregon (from paper)

Rain totals: Dry patch over Oregon (from paper)

Northwest Plains (Wyoming, Montana, Alberta, Saskatchewan)

The Northwest plains saw a significant decrease in frost days at a rate of .16 days per year. There was a significant increase in the number of warm days and warm nights, with an increase in all other factors. While the increases in growing season and precipitation are beneficial so far, the researchers noted that continued warming will have detrimental effects on soil moisture and that the earlier spring runoff will pose challenges for water management.

Humid Continental Plains (North Dakota, South Dakota, Nebraska, Iowa, Minnesota, Manitoba)

Changes in this area were more extreme than the Pacific Northwest or the plains. There were significant increases in all indicators except for frost days, which saw a significant decrease. The researchers were concerned to note that warm nights are outnumbering cool nights in the continental plains by 5:1. The average rainfall is increasing by .11mm per year which will eventually have serious consequences as the paper notes that most farmland and urban areas in the continental plains are located on flood plains.

Gulf (Texas, Oklahoma, Kansas, Missouri, Arkansas, Louisiana)

The Gulf States saw the most significant increase in rain totals with annual averages going up by 2.8mm per year. There were also significant increases in the number of warm nights, wet days and rain intensity. While there was a significant decrease in the growing season length, it was most pronounced in the northern states and possibly linked to the significant decrease in frost days. Interestingly, there was a significant decrease in warm days, which the researchers think could be linked to the increase in rain (more clouds = less sunlight beating down on you).

American Southwest (Utah, Colorado, Arizona, New Mexico)

Climatically, this one is a real mixed bag going from amazing ski mountains all the way to New Mexican desert. However, there were still some overarching trends. There were significant increases in warm days and nights, rain totals, rain intensity and wet days. There was a significant decrease in frost days and an increase in very wet days and the growing season. The paper noted that while the increase in rain in the Southwest is currently positive, that growing extremes in temperature and the evaporation associated with it will likely negate this factor in the future.

One large concern was the decrease in frost days, given that much of the flow from the Colorado River comes from snowmelt, which was wonderfully understated as:

‘While best management practices may be able to mitigate the risk of widespread system failure, current levels of development in arid areas of the region may be unsustainable.’

This is scientist for ‘you either deal with this now, or something’s going to give in a really nasty way later’. Or, as one of my favourite climate bloggers Joe Romm says ‘Hell and High Water’ which will bring us the next Dust Bowl.


The final segment in Western North America had significant decreases in frost days (as did all of Western North America), significant increases in warm nights and increases in all the other indicators. This may seem milder; however the researchers warn that California had substantial warming with only a slight increase in precipitation. This will be deadly as climate change continues. As the paper states:

‘A decline in the availability of water supplies may make the current intensive agriculture industry in California’s Central Valley unsustainable in the long term.’

Did you hear that? It’s the sound of your favourite Napa wine grapes shrivelling and dying in the heat.

The end of irrigated agriculture in California? (photo: flickr)

The end of irrigated agriculture in California? (photo: flickr)

So what does this all mean? Well, long story short it means that while we here in Canada aren’t experiencing the worst of climate extremes yet, and while each region of North America will change specifically based on their local climate, we haven’t seen anything yet.

The long term trends are pretty clear for most areas (or at least statistically significant) and the consequences for communities and industries aren’t good. And that’s even before you start to think about non-linear climate responses and ecosystem tipping points. So, for the sake of the wine in Napa, the skiing in the Rockies, the agriculture in the prairies and the people who call New Mexico home, let’s stop burning carbon.

Let Them Eat Cake? Feeding 9 Billion People

What changes will need to be made to agricultural practices in order to double food production for predicted population growth this century?

WHO: Jonathan A. Foley, Kate A. Brauman, Emily S. Cassidy, James S. Gerber, Matt Johnston, Nathaniel D. Mueller, Christine O’Connell, Deepak K. Ray, Paul C. West, John Sheehan, Institute on the Environment (IonE), University of Minnesota, Saint Paul, Minnesota, USA
Navin Ramankutty, Department of Geography and Global Environmental and Climate Change Centre, McGill University, Montreal, Quebec, Canada
Christian Balzer, Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
Elena M. Bennett, School of Environment and Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
Stephen R. Carpenter, Center for Limnology, University of Wisconsin, Madison, Wisconsin, USA
Jason Hill, Institute on the Environment (IonE), University of Minnesota, Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
Chad Monfreda, Consortium for Science, Policy and Outcomes (CSPO), Arizona State University, Tempe, Arizona, USA
Stephen Polasky, Institute on the Environment (IonE), University of Minnesota, Department of Applied Economics, University of Minnesota, Saint Paul, Minnesota, USA
Johan Rockström, Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
Stefan Siebert, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
David Tilman, Institute on the Environment (IonE), University of Minnesota, Department of Ecology, Evolution& Behavior, University of Minnesota, Saint Paul, Minnesota, USA
David P. M. Zaks, Centre for Sustainability and the Global Environment (SAGE), University of Wisconsin, Madison, Wisconsin, USA

WHAT: Looking at all of the recent research on agricultural processes and working out how we can feed 9 billion people without also cooking the climate

WHEN: 20 October 2011

WHERE: Nature, Vol. 478, October 2011

TITLE: Solutions for a cultivated planet (subs req.)

Currently, 1 in 8 people globally lack access to food or are chronically malnourished. This alone is a large problem for world food systems, however with the population expected to increase to 9 billion by 2050 the problem just got even bigger. Our agricultural food systems are estimated to require doubling in order to feed all those extra people.

How will agricultural food systems have to change this century to provide global food security while also reducing the environmental impacts that agricultural practices have caused leading to increasing climate change?

This is the question these researchers set out to answer in another wonderful example of science being a collaborative sport.

Image: NASA

Image: NASA

Agriculture currently uses 50% of the earth’s ice-free surfaces. 12% is used for crops we eat directly, while 38% is used for pasture to grow livestock as well as other things like biofuels (2%). We as a species have used pretty much all the land that is available on the planet for agriculture – the land we haven’t farmed is tundra, desert, mountains or cities. Agriculture is the single biggest land use on the planet.

Innovation is going to be the major key to increasing global food production in this century, given that there’s not much more land we can farm on effectively. Global crop yields increased by 56% between 1965-1985 with the advent of mechanised and industrialised agricultural practices. However, between 1985-2005 yields only increased by a further 20%, and yields are increasing by smaller margins each year.

The four major solutions this group of researchers came up with to feed the world sustainably were:

1. Ending Agricultural Geographical Expansion

Most of the land currently being cleared for new agriculture is in the tropics and contributing to tropical deforestation. This is an issue for two reasons: firstly because deforestation worldwide is a huge contributor to greenhouse gas emissions and climate change, but also secondly because most tropical land is less productive than land that is already being farmed. This means that the productivity gained is less than the greenhouse gasses emitted through the deforestation.

Luckily for the authors of the paper, one of the major drivers of tropical deforestation is local economic drivers, which means the solution to this issue is socio-economic and this group of scientists will leave that for the economists.

2. Closing Yield Gaps

Recent research has looked at ‘yield gaps’ which is where different farms in the same area with the same soil and climate conditions end up with different crop yields. Closing those yield gaps and making sure each farm is as productive as possible is one gap that could contribute greatly to feeding the world. The research shows the greatest room for improvement is in areas of Africa, Latin America and Eastern Europe.

Closing the yield gap by 95% (so that your farm is 95% as productive as your neighbour’s farm) could increase world food production by 58%. If we only managed to close the yield gap by 75%, there would still be a 28% increase in food production.

However, doing this while simultaneously reducing the environmental impacts from intensive agriculture requires farmers to look more at Precision Agriculture methods.

3. Increased Efficiency

The current agricultural usage of water, nutrients and chemicals is unsustainable. Excess nutrient use has affected Nitrogen and Phosphorus cycles which has led to farmland without enough soil nutrients because of losses in the agricultural processes and deadzones in oceans from too much nutrient runoff.

The research found that nutrient excesses were worst in areas of China, Northern India, the USA and Western Europe, and recommends that these countries implement nutrient recycling and recovery programs to minimise use.

4. Food Delivery Systems

Food delivery systems need to be reformed in order to feed 9 billion people. The paper points out that a dietary shift away from meat would make land much more productive as it would be growing crops for direct human consumption, but they’re also realistic about how unlikely it is that we’ll all become vegetarian.

However there are much more immediate efficiencies to be found reducing waste in supply chains. The UN Food and Agriculture Organisation estimates that 1/3 of all food is never consumed. It either gets damaged in transit, or is not sold and gets thrown out. Making our supply chains from farm to table shorter and more efficient will be key to feeding the world.

Feeding the world: Don’t forget the wine! (Chris Gin, flickr)

Feeding the world: Don’t forget the wine! (Chris Gin, flickr)

The researchers point out that feeding 9 billion people successfully will only be possible if all of the above strategies are implemented at once. Better yields and food delivery systems won’t be very useful if deforestation continues and climate change starts wiping out all the yield gains. Similarly, ending deforestation alone won’t be very useful if water and nutrient use don’t become more efficient and yields are affected by shortages.

The paper suggests scaling up some solutions that are already being implemented by some farmers like precision agriculture, drip irrigation, organic soil remedies (like no-till farming), buffer strips and wetland restoration in low lying areas, drought resistant crops and low fertilizer crops, perennial grains and paying farmers for environmental services.

As with combating climate change, feeding the world is going to take new and innovative practices which not only improve the farming business, but also improve the resilience of agricultural food systems, and all of these solutions need to be tried simultaneously. But I guess no-one ever said solving the world’s problems was going to be easy!

World Bank Wants off the Highway to Hell: Part Two

‘Given that it remains uncertain whether adaptation and further progress toward development goals will be possible at this level of climate change, the projected 4°C warming simply must not be allowed to occur’ World Bank report

WHO: The Potsdam Institute for Climate Impact Research and Climate Analytics, commissioned by the World Bank

WHAT: A report looking at the impacts of 4oC of global warming and the risk to human systems

WHEN: November 2012

WHERE: The World Bank’s website

TITLE: Turn down the heat: Why a 4oC warmer world must be avoided

This is part two; part one is here.

What does a 4oC world look like?

It looks like a place where climate change has undermined economic growth through natural disaster after natural disaster which eventually overwhelms emergency response capabilities.

It looks like a world where all of the gains towards to the Millennium Development Goals of eradicating poverty and hunger have been wiped out by the negative impacts of climate change, and extreme heat stress has caused a 60% or more reduction in crop yield.

It looks like a world where even wealthy industrialised countries are no longer able to adapt to or meet development goals because of climate change and where entire coastal cities have been abandoned because the cost of fortifying them against rising sea levels was too great.

New York City in a 4oC world?
(Photo from New York Times Sunday Review Nov. 25th 2012 via ClimateProgress)

How could this happen? How could the change from 2oC to 4oC be the difference between continuing economic growth in a green economy and abandoned flooded cities?

Non-linear and cascading impacts.

Cast your minds back with me to high school math where you learned about exponential graphs. The ones that were y=x2 and you had to solve for x in your exams and it hurt your brain? This is non-linear and what is likely to happen with the planet. Take the oceans for example. While we still have sea ice in the Arctic, the warming from the oceans sucking up almost half of our carbon emissions every year is still relatively slow. However, once the ice melts and it’s all open water for the first time, that’s when warming gets going and it will likely ramp up like an exponential graph.

In fact, if you really feel like nerding it up, you can simulate sea ice at home and watch the tipping point happen. Put ice and water into a pot and once it’s cold (1-2oC) turn the heat on high and take the temperature every 30 seconds until the ice is all gone and the water is getting hotter (15-20oC or longer if you want). Graph the results and find your tipping point. Science!

Simulating Arctic ice melt: science! (photo: ©Adam Hart-Davis)

The final chapter in the World Bank report looks at the potential implications for a 4oC world in terms of risk management. If it’s going to cost a certain number of trillion dollars to prepare for 2oC, should we just double the amount and prepare for 4oC? They think that may not be enough since ‘lurking in the tails of the probability distributions are likely to be many unpleasant surprises’.

The report points out that since cascading effects are very difficult to predict, that most of the predictions I covered in part one are based on linear models and likely to be conservative estimates of what will happen with 4oC warming. They are also sector based and don’t take into account what happens when impacts team up and work together.

Going back to the oceans again, what will the cumulative impacts be of all the effects that have been studied separately? What happens when coral reefs collapse, marine production reduces from rising temperatures and acidification, low-lying coastal areas are inundated from sea level rise, and human economic and social impacts are all lumped together at the same time?

The report states that there is a high level of concern that all of those effects all happening together at once hasn’t really been studied or quantified beyond ‘horrifying’.

From what we know now from all of the leading research, this is a list of potential tipping points from the report:

This may be the coral reef tipping point which will create larger storm surges for coastal areas that were previously protected. It also means an economically significant loss of tourism dollars for places like the Great Barrier Reef.
This could also be the tipping point for the Greenland Ice Sheet which has been melting faster than expected (was previously predicted for 4.6oC). There is approximately 6-7m of sea level rise in this ice sheet, so New York City may need to move inland.

This could be the tipping point for the Amazon Rainforest, where large parts of the rainforest die off from lack of water and release more carbon into the atmosphere, further fuelling climate change in a positive feedback loop that it will be almost impossible to recover from.
This could also be the point for the West Antarctic Ice Sheet which has 3m of additional sea level rise stored in it. New York City will need to keep moving.

This is the probable tipping point for world agriculture as crops start dying from heat stress. The IPCC assessment predicts that crop yields will decrease between 63-82%. Keep in mind that this goes hand in hand with a population increase to 9 billion people.
This is also the point at which the accumulated stresses from 2oC and 3oC overwhelms emergency and health services and all of the gains made to alleviate poverty are also overwhelmed by the negative consequences from climate change.

Once the World Bank has laid out for us exactly how horrible it could possibly get in a way we can’t easily predict, plan for, adapt to safely or afford, this is the very simple conclusion they have that we should all be able to agree with:

‘Given that it remains uncertain whether adaptation and further progress toward development goals will be possible at this level of climate change, the projected 4°C warming simply must not be allowed to occur—the heat must be turned down. Only early, cooperative, international actions can make that happen.’

Getting off the Highway to Hell

Climate change is kicking in faster that expected, and the global threshold of 2oC is now considered the line between dangerous and extremely dangerous climate change. What will it take to avoid this highway to hell?

WHO: Kevin Anderson, Tyndall Centre for Climate Change Research, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK  and School of Environmental Sciences and School of Development, University of East Anglia, Norwich, UK
Alice Bows, Sustainable Consumption Institute, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK

WHAT: Some carbon budgetary truths for the world – how much do we have left to burn and when do we have to stop it by?

WHEN: 13 January 2011

WHERE: Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Phil. Trans. R. Soc. A vol. 369, no. 1934

TITLE: Beyond ‘dangerous’ climate change: emission scenarios for a new world

Have you ever seen one of those reality TV shows where a person who is hopeless with money is given some budgeting ‘real talk’ and taught to live within their means? This paper is going to do that for your carbon budgets.

Humans love to procrastinate – we’re great at it. And despite all the new semester resolutions of keeping on top of the work this time, it inevitably leads to last minute late night exam cramming. However, it looks like climate change doesn’t have this problem. Currently, the arctic ‘death spiral’ is decades ahead of melting from climate change schedule, the Great Barrier Reef in Australia is already 50% bleached and dead and the drought predictions for the south west of the USA are also ahead of schedule.

This means that the globally declared point that we shall not pass for global warming of 2oC has now been upgraded from the line between acceptable and dangerous climate change to the border between dangerous and extremely dangerous climate change. Congratulations on the promotion 2oC?

So now that procrastinating past 2oC is looking like a dangerous decision, what do we need to do about it?

These researchers looked at the Copenhagen Accord from the 2009 UNFCCC negotiations (remember the non-binding one?) and it states that we must act to prevent going above 2oC of global warming on the basis of science and equity. Since it’s the cumulative emissions that are really going to bite us, the researchers decided to work from the end point of preventing 2oC in different scenarios and then worked the carbon budgets backwards to see if we have a chance of meeting the 2oC goal and how we could do it.

The UN separates the UNFCCC agreement into two groups: Annex 1 countries (which is the developed world) and non-Annex 1 countries (the developing world). Keeping with the ideal of equity, the scenarios in this paper allow for emissions to grow in the developing world longer than they can grow in the first world. However, the paper did point out that if developing nations grow into developed fossil fuel economies, their emissions will outstrip world emissions from the industrial revolution to the 1950s, so mitigation in the developing world is going to be increasingly important really fast.

The paper does three scenarios and then tweaks each one. The first scenario only counts CO2 emissions which allows it to be more accurate, but doesn’t include other greenhouse gases. The second scenario includes all six main greenhouse gases which makes it less accurate (more variables) but also more realistic. The third scenario looks at what is currently considered ‘politically possible’ in terms of emissions reductions. It gets long, so I’ll provide a handy summary table too!

Interestingly, the Bill McKibben budget of 565 Gigatonnes (Gt) of carbon (2055 Gt of CO2) from his Rolling Stone article is not considered here, because the chance of blowing past the 2oC limit is too high.

Here’s how they worked out:

CO2 only with a small budget
If we have a carbon budget of 1321 Gt CO2 and emissions from the developing world grow at less than 3% per year until 2015, and reduces by 6% per year after 2020, and the first world reduces their emissions from now by 11% per year, we have a 36% of still causing extremely dangerous climate change.

If we do the above but the developing world’s emissions grow until 2025, they’ve spent the whole carbon budget at once and we blow past 2oC. But if the developing world’s emissions grow at less than 1% until 2025 and they reduce their emissions by 7-8% per year while the first world reduces by 11% per year from now, then there’s a 37% chance of causing extremely dangerous climate change. The researchers described this one as ‘plausible but highly unlikely’.

CO2 with a small budget scenarios with a 36% chance (a), blowing the budget (b) and a 37% chance (c). Blue line is first world emissions, red line is developing world emissions, dotted line is global emissions including deforestation (from paper)

CO2 only with a bigger budget
So what happens if we’re a bit more realistic and increase the burnable budget a bit? If we have a carbon budget of 1578 Gt CO2 and emissions from the developing world grow by 4% per year until 2015, first world emissions don’t grow and global emissions reduce by 5-6% per year from 2015, we have a 50% chance of causing extremely dangerous climate change.

If there is a 5 year delay and emissions in the developing world grow by 4% per year until 2020, and then reduce by 7-8% per year after that while the first world reduces by 7-8% per year from 2010 (yes, from two years ago), then the 5 year delay bumps us up to a 52% chance of causing extremely dangerous climate change, even with the faster reductions. Given we needed to start two years ago, that one’s out too.

If the developing world misses the 7-8% per year reduction targets above and only reduce emissions by 4-5% per year, they spend all the carbon budget and we either blow past 2oC or first world emissions fall immediately to zero in 2015. Also not workable then.

CO2 with a bigger budget with a 50% chance (a), with a 52% chance (b) and blowing the budget (c) (from paper)

Counting all the gases with a small budget
If we include all the other greenhouse gases like methane and nitrous oxide (which means we start talking CO2 equivalent because otherwise it’s really unwieldy to count), we can also count emissions for food production for the 9 billion people we’re going to have on the planet by 2050, which will be around 6 Gt Co2e per year (animals fart methane and crops need nitrogen among other things) and further reduces the carbon budget.

If the budget is 1376 Gt CO2e and the developing world’s emissions grow at less than 3% per year until 2015, emissions in the first world need to drop to zero in 2015. So that budget is bust too.

All GHGs with a small budget which goes bust

Counting all the gases with a bigger budget
If the budget is 2202 Gt CO2e and the developing world increases emissions by less than 3% per year until 2015 and then decreases by 6% per year and the first world reduces emissions by 3% per year until 2020 and then 6% per year after that, we have a 39% chance of causing extremely dangerous climate change.

If the developing world grows at 3% per year until 2020 and then reduces emissions by 6% per year, the first world needs to reduce emissions by 10% per year from 2010. So that budget is also bust.

If the developing world only grows at 1% per year until 2025 and reduces by 4-5% per year, the first world’s emissions need to be flat to 2014 and reduce by 6% per year after that. If we could do that we would have a 38% chance of causing extremely dangerous climate change.

All GHGs with a bigger budget 39% chance left, busting budget middle, 38% chance right (from paper)

But here’s the problem; currently what is considered politically and economically possible for reducing carbon emissions is reductions of 3% per year. Which blows all of these budgets.

If we only counted the CO2,had a budget of 2741 GtCO2 (which is higher than any of the budgets above) and reduced our emissions by 3% per year from 2015 in the first world and 2030 in the developing world, we have an 88% chance of causing extremely dangerous climate change.

The politically feasible options counting CO2 left and all GHGs right, both with 88% chances of blowing 2oC (from paper)

If we counted all the gases and had a larger budget of 3662 Gt CO2e with reductions of 3% per year as above, we get the same result. This means that business as usual is actually business on the way to 4oC of global warming, which has been described by the one of the authors of this paper Kevin Anderson as

incompatible with organized global community, is likely to be beyond ‘adaptation’, is devastating to the majority of ecosystems & has a high probability of not being stable i.e.  4°C would be an interim temperature on the way to a much higher equilibrium level’

Scenarios in table form for quick reference (click for bigger version)

Basically, what we’re currently doing is going to fail spectacularly in the near future. And since physics doesn’t negotiate we can’t get an extension on this one. If we are to make any of the carbon budgets above, society needs to be reducing carbon emissions at a much higher rate than we currently are.

I’d like to finish with the conclusion from the paper, because I think their version of climate tough love is excellent:

This paper is not intended as a message of futility, but rather a bare and perhaps brutal assessment of where our ‘rose-tinted’ and well intentioned (though ultimately ineffective) approach to climate change has brought us. Real hope and opportunity, if it is to arise at all, will do so from a raw and dispassionate assessment of the scale of the challenge faced by the global community. This paper is intended as a small contribution to such a vision and future of hope.

Climate Change Book Review: Under a Green Sky

Ever seen a greenhouse extinction? It looks like this.

WHO: Peter D. Ward (Earth and Space Sciences, College of the Environment, University of Washington, WA)

WHAT: Under a Green Sky: Global Warming the Mass Extinctions of the Past and What They Can Tell Us About Our Future

WHERE: Your local bookstore, your local library, etc.

WHEN: Published 2007

I’m taking a moment away from research papers to talk about a book I just finished reading (yes, I read climate change non-fiction as well as climate change research papers – I am that nerdy). Now, when someone says Palaeontologist, not only do I struggle to type it, I also don’t immediately think ‘great writing style’ – no offence to all the budding Palaeontologist/authors out there!

So the fact that Peter Ward has a really evocative style of writing that was able to transport me to the various digs and periods of ancient history that he studies, was one of the reasons I wanted to write about this book. Additionally, he paints a vivid picture of what our future could be like with catastrophic climate change.

I know that most communications people will tell me that we can’t be too doom and gloom, that we have to keep the really ugly truth of what we’re doing to our atmosphere and planet under wraps because people will be frozen with fear and overwhelmed by the problem. Some days I agree with them, but on other days I think it’s really important to look down the long term road to remind ourselves why it’s so important to act on climate change now.

Dr. Ward is an expert in mass extinctions. He has spent much of his career looking at Ammonite fossils to see where in the fossil record mass extinctions occurred and why. Through his studies, he’s discovered that many mass extinctions were greenhouse extinctions.

So what does greenhouse extinction look like? It looks like this:

Buse Lake, Barnhartvale, BC (photo: Norm Dougan)

See the water? It’s purple. It’s purple because there is no longer any oxygen in the water in this lake near Kamloops BC. The bacteria in this lake ‘eat’ hydrogen sulphide, which smells like rotten eggs and allows the bacteria to take over when there is no oxygen in the water. No animals can live in this water – we need oxygen to survive.

So what does a lake in BC have to do with climate change? Climate change caused by human pollution is creating a warmer world and a warmer world means a world with less oxygenated water. I think Dr. Ward put it best in this description of what the earth would have looked like at the end of the Triassic period (p. 138, metric conversions mine):

‘No wind in the 120-degree [48.8c] morning heat, and no trees for shade. There is some vegetation, but it is low, stunted, parched. Of other life, there seems little. A scorpion, a spider, winged flies, and among the roots of the desert vegetation we see the burrows of some sort of small animals – the first mammals, perhaps. The largest creatures anywhere in the landscape are slim, bipedal dinosaurs, of a man’s height at most, but they are almost vanishingly rare, and scrawny, obviously starving. The land is a desert in its heat and aridity, but a duneless desert, for there is no wind to build the iconic structure of our Sarahas and Kalaharis. The land is hot barrenness.

Yet as sepulchral as the land is, it is the sea itself that is most frightening. Waves slowly lap on the quiet shore, slow-motion waves with the consistency of gelatine. Most of the shoreline is encrusted with rotting organic matter, silk-like swaths of bacterial slick now putrefying under the blazing sun, while in the nearby shallows mounds of similar mats can be seen growing up toward the sea’s surface; they are stromatolites. When animals finally appeared, the stromatolites largely disappeared, eaten out of existence by the new, multiplying, and mobile herbivores. But now these bacterial mats are back, outgrowing the few animal mouths that might still graze on them.

Finally we look out on the surface of the great sea itself, and as far as the eye can see there is a mirrored flatness, an ocean without whitecaps. Yet that is not the biggest surprise. From shore to the horizon, there is but an unending purple colour – a vast, flat, oily purple, not looking at all like water, not looking anything of our world. No fish break its surface, no birds or any other kind of flying creatures dip down looking for food. The purple colour comes from vast concentrations of floating bacteria, for the oceans of Earth have all become covered with a hundred-foot-thick [30m] veneer of purple and green bacterial soup.

At last there is motion on the sea, yet it is not life, but anti-life. Not far from the fetid shore, a large bubble of gas belches from the viscous, oil slick-like surface, and then several more of varying sizes bubble up and noisily pop. The gas emanating from the bubbles is not air, or even methane, the gas that bubbles up from the bottom of swamps – it is hydrogen sulphide, produced by green sulphur bacteria growing amid their purple cousins. There is one final surprise. We look upward, to the sky. High, vastly high overhead there are thin clouds, clouds existing at an altitude far in excess of the highest clouds found on our Earth. They exist in a place that changes the very colour of the sky itself: We are under a pale green sky, and it has the smell of death and poison. We have gone to the Nevada of 200 million years ago only to arrive under the transparent atmospheric glass of a greenhouse extinction event, and it is poison, heat, and mass extinction that are found in this greenhouse.’

Are you terrified now? Because this is what our future with runaway climate change could look like. The past that he describes could be the future we are unwittingly creating. The planet will be fine – the planet has gone through this before. But the humans might not be.

Getting into gear: required rates of climate action

“The decarbonisation of global energy sources is the only available means of effective mitigation of global CO2 emissions while still allowing society to grow as it has done historically.”

WHO:  A. J. Jarvis, D. T. Leedal, C. N. Hewitt (Lancaster Environment Centre, Lancaster University)

WHAT:  Finding a mathematical relationship between social actions for carbon emissions mitigation and global temperature change

WHEN: September 2012

WHERE: Nature Climate Change, Vol. 2, September 2012

TITLE: Climate–society feedbacks and the avoidance of dangerous climate change (subs. required)

We all get the idea that the actions of people and society as a whole (particularly in the first world) are causing climate change. Or at least we should get that by now. Humans are burning the fossil fuels which are polluting our atmosphere. It’s pretty tightly linked. But these researchers weren’t just content with sitting back and assuming everybody got that link. So they went about proving it mathematically. Yay for maths nerds!

The researchers figured that since global temperature changes are linked with increased CO2 emissions, then you should be able to work out how much effect social actions to prevent global warming have on global temperature changes. And if you can measure those effects, then it can create positive feedbacks to keep us all going in the same way getting on the scales and seeing a smaller number can keep you motivated to keep doing the hard yards in the gym.

For those that have a thing for algebra, it looks like this:

Global anthropogenic CO2 emissions, U (1015 g C yr-1) from fossil fuel and land-use change
lnU = α(t-t1); (α =0.0179±0.0006 yr-1; t1 = AD 1883±1.7)
Global primary energy use, E (1018 J yr-1)
lnE = η(t-t1); (η=0.0238±0.0008 yr-1; t1 = AD 1775±3.5)
Carbon intensity of global primary energy, c = U/E, (g C 106 J-1)
lnc = (α – η)(t-t1)

Energy use and carbon emissions increase, carbon intensity goes down as energy mix changes (from paper)

There’s a positive feedback loop that’s been happening since the Industrial Revolution where greater energy use leads to more human industrial growth, which leads to greater energy use etc and on. Averaged out, it was calculated to be ≈2.4% per year.

The good news is the mitigation rate (the rate that carbon emissions are decreasing from social actions) from changing the mix of energy use in the world and ramping up renewables has increased from ≈3% per year in 1990 to ≈15% per year in 2010 making our growing pollution a little bit less carbon intensive. And modest levels of feedback can make larger impacts in terms of mitigating climate change.

The bad news is, in the scheme of things we’re currently doing squat. We’re getting into the gym and looking at the scheduled hill-climb program and skipping it to just saunter on the treadmill and not break a sweat. In order to meet the targets notionally set in the UNFCCC Durban negotiations in 2011, we’re going to have to be 50 times more effective in how we’re reducing our carbon consumption. Yeah that’s right, I said fifty.

Even worse – while small changes have large effects to begin with, their effectiveness tapers off really quickly. Think about it – the first time you try and run 3km it feels like a marathon. After a few weeks of training, it’s your warm up. And so far, the researchers have found that the climate-society feedbacks have been too weak to change business as usual pollution growth.

So what’s the point? Were they just getting funky with their algebra to make us feel bad about doing nothing? No – there’s a useful application for the relationship between social action and climate mitigation.

Climate change is a moving target. You can never quite be sure exactly how it’s going to play out – it’s non-linear (unpredictable), and the consequences change depending on what we do about it. Which means the more we wake up to the realities of climate change and start actually getting our asses in gear, the more information we’ll need to be able to make policy and business decisions on what to do next.

If you can utilise the climate-society feedback link, then you can analyse how effective the action has been and where the next target should be as it changes – it’s climate change real time tracking in the same way I know I need to pick up the pace in the gym if my last km was slower.

Pick up the pace people- London 2012 Olympic Women’s Marathon (photo: Amy Huva 2012)

As the researchers say in the quote from the top of the blog “the decarbonisation of global energy sources is the only available means of effective mitigation of global CO2 emissions while still allowing society to grow as it has done historically.”

Our choices are – ignore it and hope the reality never hits you (which it will anyway), or get into gear and onto that treadmill. I know which one I’m choosing.

Sea Level Rise and the Effects of Carbon Pollution Reduction

WHO: Michiel Schaeffer (Environmental Systems Analysis Group, Wageningen      University, The Netherlands),
William Hare (Potsdam Institute for Climate Impact Research, Potsdam, Germany),
Stefan Rahmstorf (Potsdam Institute for Climate Impact Research, Potsdam, Germany),
Martin Vermeer (Geoinformatics, Aalto University School of Engineering, Finland)

WHAT: Estimates of sea level rise with different levels of CO2 emission reduction

WHEN: 24 June, 2012

WHERE: Nature Climate Change, Vol 2 Issue 7 2012

TITLE: Long-term sea-level rise implied by 1.5 °C and 2 °C warming levels

One of the consequences of climate change is going to be sea level rise as the globe slowly warms and ice sheets and glaciers continue to melt.

The issue is trying to predict exactly how much sea level is going to rise by and how much we can do about it. This paper was published in June in the journal Nature Climate Change, which is an offshoot of the journal Nature, one of the most highly respected peer reviewed scientific journals in the world.

The researchers used several different scenarios for looking at how sea levels rise with rising temperatures and used what’s called a semi-empirical model to predict the numbers out to 2100 and 2300.

A semi-empirical model is one that combines observed and recorded data (thermometers, tide records) with paleo data (ice cores, fossil records). Since there is only recorded tide gauge data from the previous 130 years, this is not a large enough sample to use for long range predictions. It would be like using one week of training to determine whether I could run a marathon. So the researchers combined the historical data with the recorded data and calibrated to test how realistic the combination was.

Calibrating is where you test something for a single result several times and work out what your error margin is. For example, you could measure three different bottles of Coca Cola you bought at the store, and one might have 600mL, one might have 603mL and the third might have 598mL. They’re all supposed to be 600mL, but since most things have a margin of error, not all are exact.

Same thing for science experiments. The researchers calibrated their data for the years 1000 through to 2006 and found that their results were similar to other scientists who had done similar experiments.

Several scenarios were used; two with no reductions in carbon emissions (from the Copenhagen Accord agreement), two where the earth stays within 2C of warming (one that looks at all polluting gasses – carbon, ozone and sulphur based and one that looks at the delay of emission reductions until 2100), and one where the earth stays within 1.5C of warming (with early carbon emission reductions keeping pollution under 400 parts per million (ppm) in the atmosphere).

Three of the scenarios (delaying until 2100 and two in between) used data that will be included in the IPCC 5th Assessment Report which is the newest data on climate change. The finalised 5th report won’t be published by the UN until the end of 2014.

One of the scenarios for 2C (the one with the different polluting gasses) was developed by an international scientific group and published in Climactic Change. The scenario for 1.5C was developed by a group working for the International Energy Agency and published in the journal Energy. Another hypothetical scenario where global carbon emissions are zero by 2016 was also used to see what effect historical emissions might have on sea levels.

So what did they find? Already, the data for the 20th Century (1900-1999) has higher sea levels than any time in the past 1,000 years.

Using the scenario from the Copenhagen Accord (the equivalent of doing nothing) a sea level rise of 72 – 139cm by 2100 was predicted.

Even with zero emissions by 2016 there’s a predicted sea level rise of 40 – 80cm by 2100. The reason for this is because climate systems are inert. Which means they can absorb a lot of change before you can see it and that there’s a time lag between putting the pollution into the atmosphere and seeing the consequences.

Sea level rise precitions (MERGE400 = 1.5C, Stab2 and RCP3-PD = 2C, CPH = no action, others are variations in between). Dark lines are the median (middle) predictions, shaded areas show the uncertainty range.

So what does this mean in reality for climate change and people? It means that even if we limit carbon pollution in the atmosphere to 400ppm the conservative estimate is for a 54cm rise in sea level, which is knee-deep on me. And if 400ppm doesn’t sound like a very big number, just remember the US EPA recommends that more than .002ppm of mercury in your drinking water is dangerous. You don’t need large amounts of compounds for them to be dangerous to your (or the planet’s) health.

The good news is the research shows that even though there’s uncertainty regarding non-linear (unpredicted) changes in ice sheet melt, and we’re going to experience sea level rise continuing over the next 50 years from pollution already in the atmosphere, emissions reductions do show less sea level rise than the ‘do nothing’ or ‘delay’ scenarios.

So while we are going to have around half a metre of sea level rise in the next 50-100 years (I’d hold off on purchasing that beachfront property), with strong emission reductions, the sea level might peak sometime before 2100 and hopefully head back towards normal.

Why the huge range of numbers and years? Firstly because the researchers can’t say what and how much the world is going to do about climate change in the next few decades, and secondly because you can’t be absolutely (as in 100%) certain that anything is going to happen until it actually does. But the data gives us a pretty clear indication that the year 2100 will see somewhere between .5 – 1m of sea level rise.