Busting our Carbon Budget: Siberian Permafrost

Siberian permafrost is releasing ancient carbon much faster than previously thought

WHO: J. E. Vonk, L. Sánchez-García, B. E. van Dongen, V. Alling, A. Andersson, Ö. Gustafsson (Department of Applied Environmental Science (ITM) and the Bert Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden)
D. Kosmach, A. Charkin, O. V. Dudarev (Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, Russia)
I. P. Semiletov, N. Shakhova (Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, Russia and International Arctic Research Center, University of Alaska, Fairbanks, Alaska)
P. Roos (Risø National Laboratory for Sustainable Energy, Roskilde, Denmark)
T. I. Eglinton (Geological Institute, ETH-Zürich, Zürich, Switzerland)

WHAT: Measuring and calculating the carbon released from thawing and eroding permafrost in far northern Russia

WHEN: 6 September 2012

WHERE: Nature, Vol 489, 137-140

TITLE: Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia (subs req.)

Those of you who read the recent Bill McKibben article in Rolling Stone magazine about the planet’s atmospheric carbon budget will know ~565 Gigatonnes is the amount of carbon pollution that humans can still burn and hope to avoid catastrophic climate change. Beyond that, we’re playing Russian roulette with extra bullets loaded.

Why am I talking about Rolling Stone when this paper is talking about Siberia? Well, the researchers for this paper went to far northern Russia to work out how much coastal Siberian permafrost is being eroded away, releasing the carbon into the atmosphere and spending our ever shrinking carbon budget.

Muostakh Island (point A, Google maps)

The Arctic permafrost in Siberia holds ~1,000 Gigatonnes of carbon frozen on land, ~400 Gigatonnes of coastal carbon and ~1,400 Gigatonnes of sub-sea carbon. So if this permafrost starts thawing and releasing carbon at a great rate, we humans have totally bust our carbon budget and the future is looking pretty horrifying; much like the greenhouse extinction from last week’s post.

So is it thawing out? And how fast?

The Island of Muostakh in the north of Russia has been eroding at a rate of up to 20m per year, and this is where the researchers went to try and measure the amount of carbon that is being released into the atmosphere.

Eroding cliffs on Muostakh Island (from paper)

They used a dual carbon-isotope mixing model solved with a Monte Carlo simulation strategy, which is sadly not a really tasty sounding desert, but a way of working out which carbon isotopes are from plankton, topsoil or old carbon which is the stuff they’re interested in (they used 13C and 14C isotopes for those playing at home).

Through the isotope analysis they found a coastal permafrost carbon release of 22 Megatonnes (.022 Gigatonnes) of carbon per year from erosion. Additionally they estimate that 66% of the old carbon that is washed into the ocean degrades downstream and is released into the atmosphere instead of sinking to the sea floor. Previous research had thought that carbon from coastal erosion washed into the ocean without releasing into the atmosphere.

Once you combine the carbon eroded with the 66% downstream degradation, the total atmospheric release is 44 Megatonnes (.044 Gigatonnes) of carbon per year which is much larger than the previously estimated 4 Megatonnes of carbon per year. This large difference may be because of methods used in previous research, unaccounted for changes in coastal elevation (the higher the cliff, the harder for the waves to reach it) or not counting the sub-sea degradation.

Either way, the idea that we may be under-counting the amount of carbon released from thawing and eroding Siberian permafrost has some serious implications for all of us. We are currently polluting the atmosphere with carbon at a rate of 31.6 Gigatonnes per year and rising. As we continue to burn carbon, the permafrost in Siberia will thaw and erode faster, increasing from the current rate of .044 Gigatonnes per year.

We are quickly running out of time and atmospheric space to stop runaway climate change. If even half the sub-sea permafrost is released as atmospheric carbon, we’ve surpassed 565 Gigatonnes. Hopefully the increased and continued thawing of the Siberian permafrost isn’t the bit that busts our carbon budget.

Climate Change Book Review: Under a Green Sky

Ever seen a greenhouse extinction? It looks like this.

WHO: Peter D. Ward (Earth and Space Sciences, College of the Environment, University of Washington, WA)

WHAT: Under a Green Sky: Global Warming the Mass Extinctions of the Past and What They Can Tell Us About Our Future

WHERE: Your local bookstore, your local library, Amazon.com etc.

WHEN: Published 2007

I’m taking a moment away from research papers to talk about a book I just finished reading (yes, I read climate change non-fiction as well as climate change research papers – I am that nerdy). Now, when someone says Palaeontologist, not only do I struggle to type it, I also don’t immediately think ‘great writing style’ – no offence to all the budding Palaeontologist/authors out there!

So the fact that Peter Ward has a really evocative style of writing that was able to transport me to the various digs and periods of ancient history that he studies, was one of the reasons I wanted to write about this book. Additionally, he paints a vivid picture of what our future could be like with catastrophic climate change.

I know that most communications people will tell me that we can’t be too doom and gloom, that we have to keep the really ugly truth of what we’re doing to our atmosphere and planet under wraps because people will be frozen with fear and overwhelmed by the problem. Some days I agree with them, but on other days I think it’s really important to look down the long term road to remind ourselves why it’s so important to act on climate change now.

Dr. Ward is an expert in mass extinctions. He has spent much of his career looking at Ammonite fossils to see where in the fossil record mass extinctions occurred and why. Through his studies, he’s discovered that many mass extinctions were greenhouse extinctions.

So what does greenhouse extinction look like? It looks like this:

Buse Lake, Barnhartvale, BC (photo: Norm Dougan)

See the water? It’s purple. It’s purple because there is no longer any oxygen in the water in this lake near Kamloops BC. The bacteria in this lake ‘eat’ hydrogen sulphide, which smells like rotten eggs and allows the bacteria to take over when there is no oxygen in the water. No animals can live in this water – we need oxygen to survive.

So what does a lake in BC have to do with climate change? Climate change caused by human pollution is creating a warmer world and a warmer world means a world with less oxygenated water. I think Dr. Ward put it best in this description of what the earth would have looked like at the end of the Triassic period (p. 138, metric conversions mine):

‘No wind in the 120-degree [48.8c] morning heat, and no trees for shade. There is some vegetation, but it is low, stunted, parched. Of other life, there seems little. A scorpion, a spider, winged flies, and among the roots of the desert vegetation we see the burrows of some sort of small animals – the first mammals, perhaps. The largest creatures anywhere in the landscape are slim, bipedal dinosaurs, of a man’s height at most, but they are almost vanishingly rare, and scrawny, obviously starving. The land is a desert in its heat and aridity, but a duneless desert, for there is no wind to build the iconic structure of our Sarahas and Kalaharis. The land is hot barrenness.

Yet as sepulchral as the land is, it is the sea itself that is most frightening. Waves slowly lap on the quiet shore, slow-motion waves with the consistency of gelatine. Most of the shoreline is encrusted with rotting organic matter, silk-like swaths of bacterial slick now putrefying under the blazing sun, while in the nearby shallows mounds of similar mats can be seen growing up toward the sea’s surface; they are stromatolites. When animals finally appeared, the stromatolites largely disappeared, eaten out of existence by the new, multiplying, and mobile herbivores. But now these bacterial mats are back, outgrowing the few animal mouths that might still graze on them.

Finally we look out on the surface of the great sea itself, and as far as the eye can see there is a mirrored flatness, an ocean without whitecaps. Yet that is not the biggest surprise. From shore to the horizon, there is but an unending purple colour – a vast, flat, oily purple, not looking at all like water, not looking anything of our world. No fish break its surface, no birds or any other kind of flying creatures dip down looking for food. The purple colour comes from vast concentrations of floating bacteria, for the oceans of Earth have all become covered with a hundred-foot-thick [30m] veneer of purple and green bacterial soup.

At last there is motion on the sea, yet it is not life, but anti-life. Not far from the fetid shore, a large bubble of gas belches from the viscous, oil slick-like surface, and then several more of varying sizes bubble up and noisily pop. The gas emanating from the bubbles is not air, or even methane, the gas that bubbles up from the bottom of swamps – it is hydrogen sulphide, produced by green sulphur bacteria growing amid their purple cousins. There is one final surprise. We look upward, to the sky. High, vastly high overhead there are thin clouds, clouds existing at an altitude far in excess of the highest clouds found on our Earth. They exist in a place that changes the very colour of the sky itself: We are under a pale green sky, and it has the smell of death and poison. We have gone to the Nevada of 200 million years ago only to arrive under the transparent atmospheric glass of a greenhouse extinction event, and it is poison, heat, and mass extinction that are found in this greenhouse.’

Are you terrified now? Because this is what our future with runaway climate change could look like. The past that he describes could be the future we are unwittingly creating. The planet will be fine – the planet has gone through this before. But the humans might not be.

It’s Getting Hot in Here: A Brief History of Antarctic Warming

The melting and re-freezing of Antarctic ice sheets has always happened on a millennium time-scale. This time, we’re doing it in decades…

WHO: Robert Mulvaney, Richard C. A. Hindmarsh, Louise Fleet, Jack Triest, Louise C. Sime, Susan Foord (British Antarctic Survey, Natural Environment Research Council, Cambridge, UK)
Nerilie J. Abram (British Antarctic Survey, Natural Environment Research Council, Cambridge, UK and Research School of Earth Sciences, The Australian National University, Canberra, Australia)
Carol Arrowsmith (NERC Isotope Geosciences Laboratory, Keyworth, UK)
Olivier Alemany (Laboratoire de Glaciologie et Geophysique de l’Environnement (LGGE), Grenoble, France)

WHAT: Taking a giant (363.9m) ice core sample in Antarctica to look at climate history

WHEN: 6 September 2012

WHERE: Nature 489, September 2012

TITLE: Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history (subs. required)

There’s been a lot of press recently about the Arctic Death Spiral which is of great concern to the stability of our climate, and means the poor southern cousin of the Arctic – the Antarctic doesn’t get much of a look in. No Santa, not as much media, what’s even happening with those penguins down south?

Penguin! (KK Condon, flickr)

Well, it’s melting too, which is unsurprising given that the whole planet is heating up, but this group of British, Australian and French researchers have put together a short (~50,000 years) history of ice melt and temperature changes from their ice core. (How did the researchers know I did history AND science?!)

They drilled an ice core on James Ross Island that is 363.9m long (which gives a bit of perspective as to how much ice is in the Antarctic if it’s 363.9m deep!) and looked at the ratio of isotopes to work out what the climate and temperature was like. Isotopes are elements that are the same but have a different weight because of an extra neutron (the bits in an atom that have a neutral charge). Different isotopes occur naturally at different amounts – for instance, Carbon with a weight of 12 is the most common on earth and Carbon 13 (one neutron heavier) is found 1% of the time. This research looked at Hydrogen vs Deuterium isotopes.

James Ross Island, Antarctica (from paper)

Different isotope ratios can tell us what was and is going on in the atmosphere and 363.9m of ice core can tell us approx. 50,000 worth of history (the paper uses BP = before present. For some strange reason ‘present’ time is 1950, but then I guess BC and AD are just as arbitrary).

50,000 years BP was the last glacial interval before the Holocene, the current geological period we live in (although there’s an argument that we’re now living in the Anthropocene), all of which is in the ice core. There was a glacial maximum (26,000 – 20,000 years BP) which was 6.1C colder on James Ross Island than present and an early climactic optimum (warmest part) of the Holocene which was 1.3C warmer than present. Marine sediment samples show the ocean was 3.5C warmer.

Sustained warming on James Ross Island started occurring around 600 BP (1450AD for us) with a rate of .22C of warming per century. This cranked up with rapid warming between 1518 – 1621 and 1671 – 1777 of more than 1.25C.

The warming over the past 100 years has been the fastest warming seen in 2000 years, but it’s not yet out of the range of normal warming and cooling patterns for the Antarctic. However, the most recent phase of warming started in the 1920s (so will be more influenced by industrial and human pollution than the earlier warming) and it’s going at a rate of 2.6C per century. Which is double the rate of the natural warming above.

What does faster warming mean for Antarctic ice sheets? The rapid warming means the ice becomes unstable, and the researchers say that continued warming at the pace currently being observed could lead to an ice sheet collapsing. Additionally, if the warming continues, it will start melting the southern ice sheets that were stable in the earlier Holocene warm period.

So why should we, sitting at our computers a long way from the Antarctic care about melting ice sheets? Well other than the huge inconvenience that’s going to be for a whole range of cute animals like penguins whales and seals, melting ice sheets on land cause sea level to rise. The melting of the Arctic is certainly of concern for Northern Hemisphere weather patterns, but the melting of floating ice, doesn’t change sea level.

The melting of ice that is on an island does raise the sea level. And the melting of the entire Antarctic ice sheet would contribute an extra 60m to sea level. Which is horrifying, and a really good reason to care about the speed of melting in Antarctica. That kind of rise puts my hometown of Melbourne totally underwater (elevation 31m). It puts half of Vancouver underwater (elevation 0 – 152m) and all of London as well (elevation 24m).

Now, obviously the total melting of the Antarctic ice sheet is going to take a long time given how large it is. However, it’s really difficult to stop once started. And given that I keep talking about how climate change is going to be non-linear and unpredictable when feedbacks unexpectedly kick in from tipping points, I’d argue we shouldn’t be playing Russian roulette with this one and we should stop burning carbon instead.

[EDITED 21 Sept. to reflect the note from the lead author of the paper that an ice sheet is on land and an ice shelf is floating in water – AH]

Increased CO2 at the Bottom of the Food Chain – Phytoplankton

WHO: Kunshan Gao, Guang Gao, Yahe Li, Bangqin Huang, LeiWang, Ying Zheng, Peng Jin, Xiaoni Cai, Wei Li, Kai Xu, Nana Liu (State Key Laboratory of Marine Environmental Science, Xiamen University, China)
Juntian Xu (School of Marine Science and Technology, Huaihai Institute of Technology, Lianyungang, China)
David A. Hutchins (Marine Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California)
Donat-Peter Häder (experimental design and data analysis, Möhrendorf, Germany)
Ulf Riebesell (Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany)

WHAT: Large project in the South China Sea to work out the effects of increased CO2 on important algae

WHEN: July 2012

WHERE: Nature Climate Change, Vol 2 Issue 7 2012

TITLE: Rising CO2 and increased light exposure synergistically reduce marine primary productivity (sub required)

The bottom of the food chain contains the unsexy and somewhat unpopular plants and animals. Let’s face it, most of us are not going to get as worked up over algae as a really cute polar bear. But climate change is going to affect the algae too, so this large project between the State Key Laboratory of Marine Environmental Science in China, the University of Southern California and a centre for ocean research in Germany set out to find out what increased CO2 levels mean for phytoplankton.

Phytoplankton – not as cute as polar bears (Logical Progressions, Flickr)

Phytoplankton are microscopic plankton that we can only see when there’s too many of them and they create an algal bloom. They are part of a larger group of algae, which are the building blocks of the food chain in the ocean and undergo photosynthesis (just like plants do) to create 40% of the primary production (really basic organic compounds) in the ocean.

So while they may not be the coolest things in the ocean, they’re pretty important.

Oceans absorb a really large amount of the carbon pollution we’re currently putting into the atmosphere – around 1millon tonnes of CO2 every hour is absorbed and a quarter of that gets removed from the atmosphere and stored in the ocean. The increasing amount of carbon pollution we’re creating means more and more CO2 is getting absorbed by the ocean, making the ocean more acidic.

Phytoplankton algal bloom in the Ross Sea, Antarctica (NASA Goddard Photo and Video, Flickr)

Acidic oceans are not fun for the local residents. Acid makes shells thinner and reduces the defences of animals that have them, and it bleaches coral, turning the coral white. So, if we ignore the need to reduce carbon pollution and allow 800 – 1000 parts per million (ppm) of CO2 to collect in the atmosphere by 2100, what’s that going to do to the ocean and the algae?

That much atmospheric CO2 will increase ocean acidification by 100- 150% (depending on how much we pollute and interactions with other bio-systems), which is really going to suck if you’re a shell-wearing animal or you hide in coral. It’s also going to affect the ability of phytoplankton to grow and therefore produce the basic organic compounds the ocean needs.

The researchers did controlled lab tests with different levels of CO2 concentrations in sea water (between 390ppm which is what the world is currently at and 1000ppm) and different strengths of sunlight. They then checked these against the experiments conducted in the ocean to make sure their results were realistic.

To a certain point, the increased sunlight and CO2 helps the phytoplankton grow, but beyond that point, the phytoplankton start getting stressed, and in extreme situations even start emitting carbon at night after absorbing it during the day.

Apart from the fact that humanity is really in trouble at the point where the ocean starts releasing carbon rather than storing it for us, an ocean where the building block organisms are stressed isn’t going to be very productive for growing things or living.

Higher CO2 can reduce the ability of phytoplankton to grow by up to 81% depending on how much you stress them, but the more CO2 is present, the less sunlight it takes to stress the phytoplankton and reduce their growth. The decrease in phytoplankton also saw an increase in Haptophytes, which form toxic algal blooms.

The effects of CO2 on the phytoplankton can be kept neutral, but only if the amount of sunlight is kept under 30%, which is impossible outside of a lab. The researchers were not able to work out how these effects on phytoplankton would relate to CO2 absorption and sequestration in the ocean, or food production for the rest of the food chain. However, in a world where we allow 800- 1000ppm of CO2 into the atmosphere, there’s unlikely to be any humans around either, since beyond around 450ppm irreversible positive feedbacks kick in and make our planet seriously non-linear (unpredictable and extreme).

So obviously for our sakes and for the poor phytoplankton too, we should reduce our carbon emissions and not let that happen.