World Bank Wants off the Highway to Hell: Part Two

‘Given that it remains uncertain whether adaptation and further progress toward development goals will be possible at this level of climate change, the projected 4°C warming simply must not be allowed to occur’ World Bank report

WHO: The Potsdam Institute for Climate Impact Research and Climate Analytics, commissioned by the World Bank

WHAT: A report looking at the impacts of 4oC of global warming and the risk to human systems

WHEN: November 2012

WHERE: The World Bank’s website

TITLE: Turn down the heat: Why a 4oC warmer world must be avoided

This is part two; part one is here.

What does a 4oC world look like?

It looks like a place where climate change has undermined economic growth through natural disaster after natural disaster which eventually overwhelms emergency response capabilities.

It looks like a world where all of the gains towards to the Millennium Development Goals of eradicating poverty and hunger have been wiped out by the negative impacts of climate change, and extreme heat stress has caused a 60% or more reduction in crop yield.

It looks like a world where even wealthy industrialised countries are no longer able to adapt to or meet development goals because of climate change and where entire coastal cities have been abandoned because the cost of fortifying them against rising sea levels was too great.

New York City in a 4oC world?
(Photo from New York Times Sunday Review Nov. 25th 2012 via ClimateProgress)

How could this happen? How could the change from 2oC to 4oC be the difference between continuing economic growth in a green economy and abandoned flooded cities?

Non-linear and cascading impacts.

Cast your minds back with me to high school math where you learned about exponential graphs. The ones that were y=x2 and you had to solve for x in your exams and it hurt your brain? This is non-linear and what is likely to happen with the planet. Take the oceans for example. While we still have sea ice in the Arctic, the warming from the oceans sucking up almost half of our carbon emissions every year is still relatively slow. However, once the ice melts and it’s all open water for the first time, that’s when warming gets going and it will likely ramp up like an exponential graph.

In fact, if you really feel like nerding it up, you can simulate sea ice at home and watch the tipping point happen. Put ice and water into a pot and once it’s cold (1-2oC) turn the heat on high and take the temperature every 30 seconds until the ice is all gone and the water is getting hotter (15-20oC or longer if you want). Graph the results and find your tipping point. Science!

Simulating Arctic ice melt: science! (photo: ©Adam Hart-Davis)

The final chapter in the World Bank report looks at the potential implications for a 4oC world in terms of risk management. If it’s going to cost a certain number of trillion dollars to prepare for 2oC, should we just double the amount and prepare for 4oC? They think that may not be enough since ‘lurking in the tails of the probability distributions are likely to be many unpleasant surprises’.

The report points out that since cascading effects are very difficult to predict, that most of the predictions I covered in part one are based on linear models and likely to be conservative estimates of what will happen with 4oC warming. They are also sector based and don’t take into account what happens when impacts team up and work together.

Going back to the oceans again, what will the cumulative impacts be of all the effects that have been studied separately? What happens when coral reefs collapse, marine production reduces from rising temperatures and acidification, low-lying coastal areas are inundated from sea level rise, and human economic and social impacts are all lumped together at the same time?

The report states that there is a high level of concern that all of those effects all happening together at once hasn’t really been studied or quantified beyond ‘horrifying’.

From what we know now from all of the leading research, this is a list of potential tipping points from the report:

This may be the coral reef tipping point which will create larger storm surges for coastal areas that were previously protected. It also means an economically significant loss of tourism dollars for places like the Great Barrier Reef.
This could also be the tipping point for the Greenland Ice Sheet which has been melting faster than expected (was previously predicted for 4.6oC). There is approximately 6-7m of sea level rise in this ice sheet, so New York City may need to move inland.

This could be the tipping point for the Amazon Rainforest, where large parts of the rainforest die off from lack of water and release more carbon into the atmosphere, further fuelling climate change in a positive feedback loop that it will be almost impossible to recover from.
This could also be the point for the West Antarctic Ice Sheet which has 3m of additional sea level rise stored in it. New York City will need to keep moving.

This is the probable tipping point for world agriculture as crops start dying from heat stress. The IPCC assessment predicts that crop yields will decrease between 63-82%. Keep in mind that this goes hand in hand with a population increase to 9 billion people.
This is also the point at which the accumulated stresses from 2oC and 3oC overwhelms emergency and health services and all of the gains made to alleviate poverty are also overwhelmed by the negative consequences from climate change.

Once the World Bank has laid out for us exactly how horrible it could possibly get in a way we can’t easily predict, plan for, adapt to safely or afford, this is the very simple conclusion they have that we should all be able to agree with:

‘Given that it remains uncertain whether adaptation and further progress toward development goals will be possible at this level of climate change, the projected 4°C warming simply must not be allowed to occur—the heat must be turned down. Only early, cooperative, international actions can make that happen.’

World Bank Wants off the Highway to Hell

“It is my hope that this report shocks us into action… This report spells out what the world would be like if it warmed by 4 degrees Celsius… The 4oC scenarios are devastating.” Dr. Jim Yong Kim President, World Bank

WHO: The Potsdam Institute for Climate Impact Research and Climate Analytics, commissioned by the World Bank

WHAT: A report looking at the impacts of 4oC of global warming and the risk to human systems

WHEN: November 2012

WHERE: The World Bank’s website

TITLE: Turn down the heat: Why a 4oC warmer world must be avoided

Following on from last week’s Highway to Hell post, the World Bank released a report looking at the human system implications for climate change because things that disturb the current systems of running the world tend to be expensive for organisations like the World Bank.

The report looks at climate change projections for a 4oC world, most of which I’ve already covered on this blog like; ocean acidification, droughts, tropical cyclones, sea level rise and extreme temperatures. So I’m going to skip ahead to the chapters on impacts in different sectors and then my personal favourite, non-linear impacts. This week will be sector impacts.

It’s refreshing to see an organisation that is normally known for its staid and stuffy conservatism talking about climate change reality. The foreword by the World Bank’s President says no less than that the science is unequivocal, that warming of 4oC threatens our ability to adapt and that meeting the currently agreed upon UNFCCC targets (which we’re not meeting) will lead to 3.5-4oC warming which must be avoided through greater and more urgent action now.

Let’s look at what this bastion of the three piece suit with not a dreadlock in sight says about the impacts that could be felt in a 4oC world.

Generally the impacts for agriculture will be regionally specific, as will the impacts for climate change. Some regions will get more rain, some less rain, and the timing of the seasons will change.

The favourite argument of luke-warmists is that increased CO2 in the atmosphere is excellent because it will benefit agricultural growth and we’ll be able to grow lettuce in Siberia. Well, yes and no – it’s more complex than that. Between 1-3oC of warming it’s likely we’ll see increased yields in certain regions from CO2 fertilization. Beyond 3oC productivity will decrease as the stresses of other climate change impacts outweigh any benefit from extra CO2.

And even then, demand from a world population growing to a projected 9 billion by 2050 is going to increase demand by 70-100% for agricultural food products, so even without the costs of climate change reducing the productivity of crops, it’s going to be difficult to feed the world with that many people.

Another vulnerability for agriculture is sea level rise and salination of some of the world’s most productive agricultural land. Having to move your farm from a nutrient rich delta to less productive soil further inland will detrimentally affect crop yields.

Finally, the benefits of CO2 fertilisation will be limited by the availability of other nutrients. You can give a plant all the CO2 it wants, but if you don’t also give it nitrogen, phosphorus and water, it’s not going to grow any faster. It’s currently looking like there’s going to be a world shortage of phosphorus based fertilizer, which will have a very detrimental affect on world crops that need to be becoming more productive to feed a growing population, not less.

Water Resources
This section starts with a very obvious statement that is useful to point out: ‘The associated changes in the terrestrial water cycle are likely to affect the nature and availability of natural water resources and, consequently, human societies that rely on them.’

We rely on the services that the environment provides for us and the second most important one of these is water (the first one is air).

As well as the expected (and already occurring) more severe droughts, river runoff is expected to decrease significantly in areas where the water is used for both agriculture and transport like the Danube, the Mississippi, the Amazon and the Murray-Darling Basin in Australia.

In a 2oC warming world, most of the water stresses can be expected to be from population increase. By the time we get to a 4oC world, the stress of climate change will outstrip that of population increase. Even in the areas where there will be increased rainfall, it’s not likely to come at the right time of the year, or it could come all at once causing flooding.

There’s a lot of uncertainty in many models of drought prediction and rainfall prediction as well as the possible effects for specific regional areas, but the conclusions that are coming from all of the studies identified in this report range from bad to very bad, and in a 4oC world almost half of the world’s population could be water stressed by 2080.

Ecosystems and Biodiversity
This is the fun section that starts using terms like ‘mass extinction’ and gets everyone Googling things like the Eocene.

Biodiversity is, in my opinion going to be the ‘sleeper issue’ of climate change, because it happens over longer periods of time and is easy to ignore as out of sight out of mind for us urbanites until it’s too late. As the report quotes; ‘It is well established that loss or degradation of ecosystem services occurs as a consequence of species extinctions’.

There’s also the issue of thresholds. Where an animal or plant or ecosystem can absorb a certain amount of degradation, until you reach the tipping point and it can no longer take it. Some areas will be able to absorb more warming (Canada, Northern Europe) while others may reach biodiversity and ecosystem tipping points earlier (Pacific Islands, Bangladesh).

In a 4oC world, it’s possible that habitats could shift by up to 400km towards the poles, which is fine if you’re a mosquito moving north from Mexico, but not so good if you’re a mountain rabbit and you run out of mountain.

And here’s some food for thought: the report states that if the planet lost all of the species that are currently listed as ‘critically endangered’ we would officially be living through a mass extinction, and if we lost the species that are also ‘endangered’ or ‘vulnerable’ we would be confirmed as the sixth mass extinction in geological history. Which means history would list the dinosaurs and then the humans in the fossil record of mass extinctions.

As the report says: ‘loss of biodiversity will challenge those reliant on ecosystem services’. This means all of us.

Human Health
Like smoking, climate change is bad for your health. The above mentioned agricultural and water issues with a 4oC warmer world will lead to famine and malnutrition on a large scale. The extreme weather events from a planet on climate steroids will kill people in heat waves, increase respiratory diseases and allergies from the extra dust in the droughts, weaken existing health services through damage to hospitals in extreme storms, flooding and so on.

Living with constant extreme weather is bad for your mental health, whether it’s the slow and painful crush of watching drought destroy your farmland or the fast emergency of cyclones, hurricanes and floods.

And remember the mosquitoes moving north? They’ll bring new tropical diseases with them that will infect many new people who have never developed any immunity to them.

Given all of the above, it’s pretty clear why the World Bank wants off the highway to hell. Because they’re concerned about both loaning money to countries that are dealing with these catastrophes, and living through these impacts. Because, as all of my fellow Gen Ys already know, living these impacts by 2050 is not some vague and distant future. It’s before we all retire.


Next week: non-linear impacts, which are scarier than they sound. 

Getting off the Highway to Hell

Climate change is kicking in faster that expected, and the global threshold of 2oC is now considered the line between dangerous and extremely dangerous climate change. What will it take to avoid this highway to hell?

WHO: Kevin Anderson, Tyndall Centre for Climate Change Research, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK  and School of Environmental Sciences and School of Development, University of East Anglia, Norwich, UK
Alice Bows, Sustainable Consumption Institute, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK

WHAT: Some carbon budgetary truths for the world – how much do we have left to burn and when do we have to stop it by?

WHEN: 13 January 2011

WHERE: Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Phil. Trans. R. Soc. A vol. 369, no. 1934

TITLE: Beyond ‘dangerous’ climate change: emission scenarios for a new world

Have you ever seen one of those reality TV shows where a person who is hopeless with money is given some budgeting ‘real talk’ and taught to live within their means? This paper is going to do that for your carbon budgets.

Humans love to procrastinate – we’re great at it. And despite all the new semester resolutions of keeping on top of the work this time, it inevitably leads to last minute late night exam cramming. However, it looks like climate change doesn’t have this problem. Currently, the arctic ‘death spiral’ is decades ahead of melting from climate change schedule, the Great Barrier Reef in Australia is already 50% bleached and dead and the drought predictions for the south west of the USA are also ahead of schedule.

This means that the globally declared point that we shall not pass for global warming of 2oC has now been upgraded from the line between acceptable and dangerous climate change to the border between dangerous and extremely dangerous climate change. Congratulations on the promotion 2oC?

So now that procrastinating past 2oC is looking like a dangerous decision, what do we need to do about it?

These researchers looked at the Copenhagen Accord from the 2009 UNFCCC negotiations (remember the non-binding one?) and it states that we must act to prevent going above 2oC of global warming on the basis of science and equity. Since it’s the cumulative emissions that are really going to bite us, the researchers decided to work from the end point of preventing 2oC in different scenarios and then worked the carbon budgets backwards to see if we have a chance of meeting the 2oC goal and how we could do it.

The UN separates the UNFCCC agreement into two groups: Annex 1 countries (which is the developed world) and non-Annex 1 countries (the developing world). Keeping with the ideal of equity, the scenarios in this paper allow for emissions to grow in the developing world longer than they can grow in the first world. However, the paper did point out that if developing nations grow into developed fossil fuel economies, their emissions will outstrip world emissions from the industrial revolution to the 1950s, so mitigation in the developing world is going to be increasingly important really fast.

The paper does three scenarios and then tweaks each one. The first scenario only counts CO2 emissions which allows it to be more accurate, but doesn’t include other greenhouse gases. The second scenario includes all six main greenhouse gases which makes it less accurate (more variables) but also more realistic. The third scenario looks at what is currently considered ‘politically possible’ in terms of emissions reductions. It gets long, so I’ll provide a handy summary table too!

Interestingly, the Bill McKibben budget of 565 Gigatonnes (Gt) of carbon (2055 Gt of CO2) from his Rolling Stone article is not considered here, because the chance of blowing past the 2oC limit is too high.

Here’s how they worked out:

CO2 only with a small budget
If we have a carbon budget of 1321 Gt CO2 and emissions from the developing world grow at less than 3% per year until 2015, and reduces by 6% per year after 2020, and the first world reduces their emissions from now by 11% per year, we have a 36% of still causing extremely dangerous climate change.

If we do the above but the developing world’s emissions grow until 2025, they’ve spent the whole carbon budget at once and we blow past 2oC. But if the developing world’s emissions grow at less than 1% until 2025 and they reduce their emissions by 7-8% per year while the first world reduces by 11% per year from now, then there’s a 37% chance of causing extremely dangerous climate change. The researchers described this one as ‘plausible but highly unlikely’.

CO2 with a small budget scenarios with a 36% chance (a), blowing the budget (b) and a 37% chance (c). Blue line is first world emissions, red line is developing world emissions, dotted line is global emissions including deforestation (from paper)

CO2 only with a bigger budget
So what happens if we’re a bit more realistic and increase the burnable budget a bit? If we have a carbon budget of 1578 Gt CO2 and emissions from the developing world grow by 4% per year until 2015, first world emissions don’t grow and global emissions reduce by 5-6% per year from 2015, we have a 50% chance of causing extremely dangerous climate change.

If there is a 5 year delay and emissions in the developing world grow by 4% per year until 2020, and then reduce by 7-8% per year after that while the first world reduces by 7-8% per year from 2010 (yes, from two years ago), then the 5 year delay bumps us up to a 52% chance of causing extremely dangerous climate change, even with the faster reductions. Given we needed to start two years ago, that one’s out too.

If the developing world misses the 7-8% per year reduction targets above and only reduce emissions by 4-5% per year, they spend all the carbon budget and we either blow past 2oC or first world emissions fall immediately to zero in 2015. Also not workable then.

CO2 with a bigger budget with a 50% chance (a), with a 52% chance (b) and blowing the budget (c) (from paper)

Counting all the gases with a small budget
If we include all the other greenhouse gases like methane and nitrous oxide (which means we start talking CO2 equivalent because otherwise it’s really unwieldy to count), we can also count emissions for food production for the 9 billion people we’re going to have on the planet by 2050, which will be around 6 Gt Co2e per year (animals fart methane and crops need nitrogen among other things) and further reduces the carbon budget.

If the budget is 1376 Gt CO2e and the developing world’s emissions grow at less than 3% per year until 2015, emissions in the first world need to drop to zero in 2015. So that budget is bust too.

All GHGs with a small budget which goes bust

Counting all the gases with a bigger budget
If the budget is 2202 Gt CO2e and the developing world increases emissions by less than 3% per year until 2015 and then decreases by 6% per year and the first world reduces emissions by 3% per year until 2020 and then 6% per year after that, we have a 39% chance of causing extremely dangerous climate change.

If the developing world grows at 3% per year until 2020 and then reduces emissions by 6% per year, the first world needs to reduce emissions by 10% per year from 2010. So that budget is also bust.

If the developing world only grows at 1% per year until 2025 and reduces by 4-5% per year, the first world’s emissions need to be flat to 2014 and reduce by 6% per year after that. If we could do that we would have a 38% chance of causing extremely dangerous climate change.

All GHGs with a bigger budget 39% chance left, busting budget middle, 38% chance right (from paper)

But here’s the problem; currently what is considered politically and economically possible for reducing carbon emissions is reductions of 3% per year. Which blows all of these budgets.

If we only counted the CO2,had a budget of 2741 GtCO2 (which is higher than any of the budgets above) and reduced our emissions by 3% per year from 2015 in the first world and 2030 in the developing world, we have an 88% chance of causing extremely dangerous climate change.

The politically feasible options counting CO2 left and all GHGs right, both with 88% chances of blowing 2oC (from paper)

If we counted all the gases and had a larger budget of 3662 Gt CO2e with reductions of 3% per year as above, we get the same result. This means that business as usual is actually business on the way to 4oC of global warming, which has been described by the one of the authors of this paper Kevin Anderson as

incompatible with organized global community, is likely to be beyond ‘adaptation’, is devastating to the majority of ecosystems & has a high probability of not being stable i.e.  4°C would be an interim temperature on the way to a much higher equilibrium level’

Scenarios in table form for quick reference (click for bigger version)

Basically, what we’re currently doing is going to fail spectacularly in the near future. And since physics doesn’t negotiate we can’t get an extension on this one. If we are to make any of the carbon budgets above, society needs to be reducing carbon emissions at a much higher rate than we currently are.

I’d like to finish with the conclusion from the paper, because I think their version of climate tough love is excellent:

This paper is not intended as a message of futility, but rather a bare and perhaps brutal assessment of where our ‘rose-tinted’ and well intentioned (though ultimately ineffective) approach to climate change has brought us. Real hope and opportunity, if it is to arise at all, will do so from a raw and dispassionate assessment of the scale of the challenge faced by the global community. This paper is intended as a small contribution to such a vision and future of hope.

In the Wake of Sandy: Modelling Sea Level Rise

The connections between sea level rise and sediment movement in coastal areas could be a problem for flooding and climate change

WHO: Roshanka Ranasinghe, Department of Water Engineering, UNESCO-IHE, Delft, The Netherlands, Civil Engineering and Geosciences, Technical University of Delft, The Netherlands, Harbour, Coastal and Offshore Engineering, Delft, The Netherlands       Trang Minh Duong, Department of Water Engineering, UNESCO-IHE, Harbour, Coastal and Offshore Engineering, Delft, The Netherlands                                                        Stefan Uhlenbrook, Dano Roelvink, Department of Water Engineering, UNESCO-IHE, Civil Engineering and Geosciences, Technical University of Delft, The Netherlands,          Marcel Stive, Civil Engineering and Geosciences, Technical University of Delft, The Netherlands

WHAT: A rapid response model to assess the risk of coastal areas to climate change sea level rise and flooding

WHEN: 2 September 2012

WHERE: Nature Climate Change, Vol 2 Issue 9

TITLE: Climate-change impact assessment for inlet-interrupted coastlines (subs req.)

This paper has the honour of including the most complicated description of flooding I’ve ever read. Are you ready? upward and landward movement of the cross-shore coastal profile, resulting in coastline recession.’ Which is scientist for sea level rise floods the beach.

Anyhow, I thought this paper would be somewhat topical, given the damage Frankenstorm Sandy caused on the East Coast of the USA last month. The researchers have developed a model that can run multiple simulations of coastal impacts due to climate change  quickly, making it useful for local coastal risk management.

The model only works specifically with coastline areas that are less than 25km long and are barrier estuaries along sandy coasts with microtidal environments. Sounds really specific? It’s actually 50% of the world’s coastlines. Which instantly makes this tool seriously useful and very practical.

Their model is part of a larger worldwide modelling project called the Dynamic and Interactive Vulnerability Assessment, which gets huge acronym points from me for being the DIVA initiative.

More seriously, they looked at sea level rise in four areas – the Swan River and Wilson Inlet in Western Australia and the Tu Hien Inlet and Thuan An Inlet in Vietnam and used the A1B and A2 climate change scenarios from the IPCC report to run their model.

For those who haven’t read either the whole IPCC report or missed last week’s post, the A1B scenario is the middle ‘worst case scenario’ option which predicts between 18cm and 79cm of sea level rise. For the purpose of this experiment, the researchers went with the worst case scenario of 80cm which is my desk height.

This would be normal tide, not high tide (Roberto Trm, flickr)

They found that while sea level rise itself can be pretty accurately predicted, the problem is sediment. When oceans, bays and rivers all meet, there’s a lot of sediment that gets transported in different directions. And the model run by the researchers found that sea level rise only accounted for around a quarter to a half of the flooding. The rest of it was sediment movement through either the process of basin in-filling where extra sediment gets washed into the bay and decreases the volume of the bay which means that a normal water level is higher, or changes in river runoff due to changes in rainfall patterns.

If half or more of the damage coastal areas can expect from climate change and sea level rise is going to be from sediment changing the shape and depth of the area, this is something that needs to be measured and included in disaster management plans, because just dredging the sediment out can have the perverse effect of increasing flooding by removing the local ecosystems (remember the eelgrass?!) which naturally minimise floods.

Hopefully, in the near future local areas can work with tools like this one to more accurately model the potential risks from climate change, and prepare for them. In the mean time, the rest of us will hopefully wake up to the climate urgency and stop burning carbon before we’ve really ruined everything.

The cover of Bloomberg Businessweek in the wake of Hurricane Sandy (from Cover Junkie)