Agreeing to Zero

If the UN climate negotiations were to actually produce an agreement in 2015 to replace the Kyoto Accord, what would it look like?

WHO: Erik Haites, Margaree Consultants, Toronto, Canada
Farhana Yamin, University College London, Chatham House
Niklas Höhne, Ecofys, Wageningen University

WHAT: The possible legal elements of a 2015 agreement by the UN on climate change mitigation (which they’ve promised to try and do by 2015)

WHEN: 13 October 2013

WHERE: Institute for Sustainable Development and International Relations, Paris,

TITLE:  Possible Elements of a 2015 Legal Agreement on Climate Change (open access)

Let’s take a walk down fantasy lane for a moment since the UNFCCC climate change talks are happening in Warsaw over the next two weeks and imagine that the process begins to work. I’ll take off my cynical and sarcastic hat, and we can imagine together what the world might look like if nations sent negotiators with some actual power to commit their countries to reducing their carbon emissions.

Realistically, as any Canadian who has paid passing attention to the news can tell you, the Harper Government here in Canada is currently spending a lot of time and money muzzling and silencing their scientists who might talk about inconvenient things like climate change. So we know very little will come of these current negotiations. But I digress- as I said, let’s imagine, because that’s what this paper is doing.

These researchers looked at the current negotiations and figured that since all 194 countries that are part of the UN climate negotiations have agreed to negotiate a new legally binding agreement by 2015 to be implemented in 2020, maybe we should sit down and work out what the best one would look like? They helpfully point out that unless there’s an overarching plan for the negotiations that they get bogged down in procedural details, which is true given that Russia held up almost the entire negotiations on deforestation prevention financing in Bonn this year over the agenda.

Yes, Russia held up two weeks of negotiations over the agenda for the meeting (golf clap for Russia).

So to avoid negotiation grandstanding over the formatting of the agenda, what should the game plan be?

The researchers start by aiming high, stating ‘the climate regime needs to move out of continuous negotiation and into a framework of continuous implementation’ which would be awesome. They suggest we need a hybrid approach – avoiding the ‘top down’ regulation from above that tells countries how they can do things, allowing a ‘bottom up’ approach where countries get to choose how they want to reduce their emissions.

Elements of a 2015 agreement (from paper)

Elements of a 2015 agreement (from paper)

They also suggest we end the current split between developed and least developed countries that has been standard so far in the negotiations (generally Annex 1 countries are the western industrialised countries while non-Annex 1 countries are the developing countries/third world).

Instead of sitting down and trying to hash out exactly what each country is going to do to reduce their carbon emissions, the researchers say they should all agree to have net zero carbon emissions by 2050. Everyone. We all agree to zero by 2050 and then it’s up to each nation to work out how.

Using the words ‘net zero’ gives countries that believe in the commercial viability of carbon capture and storage (CCS) to use that technology and still have zero emissions, but most importantly it leaves the details up to each country.

One planet, different ways to reach zero emissions (Norman Kuring, NASA GSFC, using data from the VIIRS instrument aboard Suomi NPP)

One planet, different ways to reach zero emissions (Norman Kuring, NASA GSFC, using data from the VIIRS instrument aboard Suomi NPP)

The simplicity of this idea means that the only agreement needed for 2015 is ‘we all agree to have zero emissions by 2050 and agree that progress will be monitored by the UNFCCC’ (although the UN will say it in their very wordy form of bureaucrat). It makes the idea quite appealing and possibly(?) achievable?

So let’s imagine that everyone agreed that we should all have net zero carbon emissions by 2050. How would the UNFCCC monitor this?

It will need several things – ways to measure reductions, ways to enforce reductions, ways to avoid free-riding and commitments from each country that get upgraded every four years.

The idea these researchers have is that once everyone signs on, each country is then responsible for proving how they’re going to reduce their emissions. They’ll submit these national plans to the UN and the UN will either approve it or send it back telling them it’s not good enough. Each country will also have to prove they’re doing their fair share to reduce emissions (time to pony up the reductions EU, UK, Canada, US, Australia and others!).

The plans will then be reported on every year with the exception of countries that produce less than 0.1% of global emissions. Something that might be surprising to you – 100 countries fall under that threshold! So those countries would only have to report on their progress to zero emissions every five years.

In order to make the process complete, the agreement would need to include everything – air travel emissions, shipping emissions (and who is responsible for the emissions – the country of origin or the country who ordered the stuff?). There will also need to be more money for climate adaptation, because we are already in the age of climate impacts, which will involve wealthier countries coughing up the $100billion each year they promised and haven’t delivered on.

Oh, and of course the agreement needs to be legally binding because everyone knows voluntary commitments are like buying a gym membership as a New Year’s resolution.

Now of course, my first question when reading about an internationally agreed, legally binding commitment to reduce carbon emissions to zero by 2050 through rolling four-year periods that ramp up each time automatically is whether the unicorns are included or extras.

Complimentary unicorns? (Gordon Ednie, flickr)

Complimentary unicorns? (Gordon Ednie, flickr)

However, the researchers rightly point out that with currently available technologies and some political will, it’s possible to have reduced 90% of carbon emissions by 2050. They list sensible and achievable things to get us there like net zero carbon electricity by 2040, totally recyclable products by 2050, zero energy buildings by 2025, decarbonised and electrified passenger transit by 2040, Hydroflurocarbon (HFC) phase out by 2030, zero food in landfill by 2025 and the end of deforestation by 2025.

Even better, they’ve got a list of things we can do before the agreement kicks in for 2020 like: removing the billions of dollars that is current spent each year subsidising fossil fuels, better energy standards and air pollution standards, regulation of shipping and aviation emissions and incentives for early mitigation. Sounds simple, no?

They also recommend incentives for countries that are beating their reduction targets as well as recognition for companies and other organisations within countries that are doing their part too.

This idea is great, if we could get past the sticking point of getting countries to send negotiators who would actually have the power to agree to a legally binding agreement (this year Australia didn’t bother to send their Minister for the Environment, because the new Prime Minister doesn’t believe in climate change).

But if we did all agree that global emissions should be zero by 2050 (which they need to be to preserve a livable climate), this paper outlines a pretty good idea of what it could look like.

Advertisements

Smoking Kills, so does Climate Change

A translation of the IPCC 5th Assessment Report Summary for Policymakers

WHO: The Intergovernmental Panel on Climate Change

WHAT: Summary for policy makers of their 2000 page 5th Assessment Report (AR5) of the state of the climate and climate science.

WHEN: 27 September 2013

WHERE: On the IPCC website

TITLE: Climate Change 2013: The Physical Science Basis Summary for Policymakers (open access)

There’s a lot of things not to like about the way the IPCC communicates what they do, but for me the main one is that they speak a very specific dialect of bureaucrat that no-one else understands unless they’ve also worked on UN things and speak the same sort of acronym.

The worst bit of this dialect of bureaucrat is the words they use to describe how confident they are that their findings are correct. They probably believe they’re being really clear, however they use language that none of the rest of us would ever use and it means their findings make little sense without their ‘very likely = 90-100% certain’ footnote at the front.

So now that we’ve established that the UN doesn’t speak an understandable form of English, what does the report actually say? It works its way through each of the different climate systems and how they’re changing because humans are burning fossil fuels.

As you can see from this lovely graph, each of the last three decades has been noticeably warmer than the proceeding one, and the IPCC are 66% sure that 1983-2012 was the warmest 30 year period in 1,400 years.

Decade by decade average temperatures (Y axis is change in Celsius from base year of 1950) (from paper)

Decade by decade average temperatures (Y axis is change in Celsius from base year of 1950) (from paper)

One of the reasons I really like this graph is you can see how the rate of change is speeding up (one of the key dangers with climate change). From 1850 through to around 1980 each decade’s average is touching the box of the average before it, until after the 80s when the heat shoots up much more rapidly.

The report did have this dig for the deniers though: ‘Due to natural variability, trends based on short records are very sensitive to the beginning and end dates and do not in general reflect long-term climate trends’. Which is UN bureaucrat for ‘when you cherry pick data to fit your denier talking points you’re doing it wrong’.

Looking at regional atmospheric trends, the report notes that while things like the Medieval Warm Period did have multi-decadal periods of change, these changes didn’t happen across the whole globe like the warming currently being measured.

In the oceans, the top layer has warmed (the top 75m) by 0.11oC per decade from 1971 to 2010, and more than 60% of the carbon energy we’ve pumped into the atmosphere since 1971 has been stored in the top layer, with another 30% being stored in the ocean below 700m.

This extra heat is not just causing thermal expansion, it’s speeding up sea level rise, which the IPCC are 90% certain increased from 1901 to 2010 from 1.7mm per year to 3.2mm per year. This is now happening faster than the past two millenniums. Yes, sea level is rising faster than it has for the last 2,000,000 years so you might want to sell your waterfront property sooner, rather than later.

The extra carbon has also made it harder to live in the ocean if you own a shell, because the acidity of the ocean has increased by 26% which makes shells thinner and harder to grow.

On the glaciers and the ice sheets, the IPCC is 90% certain that the rate of melting from Greenland has increased from 34Gigatonnes (Gt) of ice per year to 215Gt of ice after 2002. Yes, increased from 34Gt to 215Gt – it’s melting six times faster now thanks to us.

For Antarctica, the IPCC is 66% certain that the rate of ice loss has increased from 30Gt per year to 147Gt per year, with most of that loss coming from the Northern Peninsula and West Antarctica. Worryingly, this ice loss will also include the parts of Antarctica that are gaining ice due to natural variability.

And at the North Pole, Santa is going to have to buy himself and his elves some boats or floating pontoons soon, because the IPCC have found ‘multiple lines of evidence support[ing] very substantial Artctic warming since the mid-20th Century’. Sorry Santa!

As for the carbon we’ve been spewing into the atmosphere since the 1850s, well, we’re winning that race too! ‘The atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased to levels unprecedented in at least the last 800,000 years’. Congratulations humanity – in the last century and a half, we’ve changed the composition of the atmosphere so rapidly that this hasn’t been seen in 800,000 years!

Methane levels have gone up by 150%, and I’m undecided as to whether that means I should eat more beef to stop the cows from farting, or if it means we raised too many cows to be steaks in the first place…

This is the part of the report where we get into the one excellent thing the IPCC did this time around – our carbon budget. I’m not sure whether they realised that committing to reduce certain percentages by certain years from different baselines meant that governments were able to shuffle the numbers to do nothing and make themselves look good at the same time, but this is a promising step.

I’ve written about the very excellent work of Kevin Anderson at the Tyndall Centre in the UK before, but the basic deal with a carbon budget is this: it doesn’t matter when we burn the carbon or how fast, all the matters is the total emissions in the end. You can eat half the chocolate bar now, and half the chocolate bar later, but you’re still eating a whole bar.

Our budget to have a 2/3 chance of not going beyond dangerous climate change is 1,000Gt of carbon and so far we’ve burnt 545Gt, so we’re more than halfway there. All of this leads to the conclusion that ‘human influence on the climate system is clear. This is evident from the increasing greenhouse gas concentrations in the atmosphere, positive radiative forcing, observed warming and understanding of the climate system.’

What observations you may ask? Scientists have made progress on working out how climate change pumps extreme weather up and makes it worse. They also got it right for the frequency of extreme warm and cold days, which if you live in North America was the hot extremes winning 10:1 over the cold extremes. Round of applause for science everyone!

Warming with natural forcing vs human forcing and how it lines up with the observations (from paper)

Warming with natural forcing vs human forcing and how it lines up with the observations (from paper)

They’re also 95% sure that more than half of the observed global surface warming from 1951 is from humanity. So next time there’s a nasty heatwave that’s more frequent than it should be, blame humans.

The report does also point out though that even though the heat records are beating the cold records 10-1, this doesn’t mean that snow disproves climate change (sorry Fox News!). There will still be yearly and decade by decade by variability in how our planet cooks which will not be the same across the whole planet. Which sounds to me like we’re being warmed in an uneven microwave. For instance, El Niño and La Niña will still be big influencers over the Pacific and will determine to a great extent the variability in the Pacific North West (yeah, it’s still going to rain a lot Vancouver).

For those that were fans of the film The Day After Tomorrow, there’s a 66% chance the Atlantic Meridional Circulation will slow down, but only a 10% chance it will undergo an abrupt change or collapse like it did in the film, so you’re not going to be running away from a flash freezing ocean any time this century.

The report then runs through the different scenarios they’ve decided to model that range from ‘we did a lot to reduce carbon emissions’ to ‘we did nothing to reduce carbon emissions and burned all the fossil fuels’. Because this is the IPCC and they had to get EVERYONE to agree on each line of the report (I’m serious, they approved it line by line, which has to be the most painful process I can think of) the scenarios are conservative in their estimations, not measuring tipping points (which are really hard to incorporate anyway). So their ‘worst case scenario’ is only 4.0oC of surface warming by 2100.

Representative Concentration Pathway (RCP) Scenarios from the IPCC AR5

Representative Concentration Pathway (RCP) Scenarios from the IPCC AR5

Now, obviously ‘only’ 4oC of climate change by the end of the century is still pretty unbearable. There will still be a lot of hardship, drought, famine, refugee migration and uninhabitable parts of the planet with 4oC. However, once we get to 4oC, it’s likely to have triggered tipping points like methane release from permafrost, so 4oC would be a stopping point towards 6oC even if we ran out of carbon to burn. And 6oC of course, as you all hear me say frequently is mass extinction time. It’s also the point at which even if humanity did survive, you wouldn’t want to live here anymore.

The paper finishes up with a subtle dig at the insanity of relying on geoengineering, pointing out that trying to put shade reflectors into orbit or artificially suck carbon out of the air has a high chance of going horribly wrong. They also point out that if we did manage large scale geoegineering and it then broke down, re-releasing that carbon back into the atmosphere would super-cook the planet really quickly.

The moral of this 36 page ‘summary’ is that it’s us guys. We’re as certain that we’ve done this as we are that smoking causes cancer. We have burned this carbon and it’s changed the chemical energy balance of the atmosphere and if we don’t stop burning carbon we’re going to cook the whole planet. Seriously. So let’s finally, actually stop burning carbon.

One Size Doesn’t Fit All

Looking at the Nationally Appropriate Mitigation Actions being undertaken by developing countries with the UNFCCC.

WHO: Xander van Tilburg, Sophy Bristow, Frauke Röser, Donovan Escalante , Hanna Fekete, MitigationMomentum Project, Energy research Centre of the Netherlands (ECN)

WHAT: An update on the progress of the NAMA projects under the UNFCCC process

WHEN: June 2013

WHERE: Published on their website MitigationMomentum.org

TITLE: Status Report on Nationally Appropriate Mitigation Actions (NAMAs) (open access)

This week, the UNFCCC (United Nations Framework Convention on Climate Change) is meeting in Bonn to try and make some more progress towards action on climate change (yay!). One of the papers that was released to time with the negotiations is this one and I thought it would be interesting to look at what actually happens on the ground in relation to the high level negotiations. There will be lots of acronyms, so bear with me and I’ll try and get us there in English.

What is a NAMA?

NAMAs are not this guy (photo: Tamboko the Jaguar, flickr)

NAMAs are not this guy (photo: Tamboko the Jaguar, flickr)

Did you say Llama? No, NAMA… In true bureaucratic style, the UN came up with the really forgettable name of NAMA for Nationally Appropriate Mitigation Actions, which can also be called ‘correctly fitting climate jeans’ or even ‘different places are different’. I want to keep calling them llamas (because I lack that maturity) but I promise not to make any bad llama jokes. The main thing you need to remember is that climate mitigation in Alaska is obviously going to be different to climate mitigation in Indonesia because they’re very different locations and economies.

The idea with NAMA is for a bottom up approach to the UNFCCC negotiations and the ideas that come out of the negotiations (they’re not just talk-fests – they have program and policy ideas too!).

Because the wealthy industrialised countries (also called the First World, Global North or Annex 1 in UN speak) are mostly responsible for the emissions causing climate change, we are also then more responsible for the cleanup. So in 2007 at the Conference of the Parties (COP 13) in Bali, it was decided that NAMA projects should be created by developing countries for mitigation projects they’d like to do which would be funded by industrialised countries.

The projects need to be related to sustainable development and are supported through technology, financing and capacity building (training local people). The people running the projects also report back to the UNFCCC so that progress can be monitored (like any project). The first group of NAMAs were submitted to the UNFCCC Secretariat at the Copenhagen COP 15 in 2009.

NAMA projects are only conducted in developing countries because the idea is that it’s going to be easier for those countries to change the way they’re developing towards a low carbon economy, rather than just following in the full carbon burning footsteps of the industrialised world and then having to retrofit low carbon alternatives.

So if they’re going to try and build it right the first time round, what do they do? First, the country comes up with a feasibility study – what do they want to do and is it possible? If it is possible, then they develop the concept to present to the UNFCCC for funding. The concept has to have a mitigation objective and be clear about who is running the project as well as support from the government of the country.

Once they’ve worked out what they’re doing, they start the preparation phase where they work out the costs, the specific support they need to pull off the project and an estimate of how much carbon emissions will be reduced through the project.

Finally, they start the implementation of the project, which is my favourite bit – getting on the ground and getting it done.

NAMA projects by stage (left) and location (right) (from paper)

NAMA projects by stage (left) and location (right) (from paper)

So far, €100million has been provided to NAMA projects, and a NAMA facility was launched to help the projects with financial and technical support in December 2012. Most of the projects are related to energy supply and the majority of them (56%) are based in Latin America.

The funding agreed to was from 2010 until 2012, so a long term financing arrangement will need to be made at this year’s talks, but I think it’s really exciting to see the tangible reality of what the UNFCCC is trying to do.

The first two NAMA projects submitted were from Mali and Ethiopia looking at shifting freight to electric rail in Ethiopia and energy efficiency and renewable energy supply in Mali.

So far, five projects have advanced far enough to receive funding. The projects are between 3-5 years in length, need between €5 – €15million in funding and should be able to start quickly (within 3-12 months) after applying.

The five projects are:

  1. Small scale renewable energy projects in Northern Sumatra, Indonesia with a feed-in tariff for independent power producers (IPPs)
  2. A project to stimulate investment in renewable energy systems in Chile
  3. Waste to energy systems using agricultural waste in Peru (with different approaches tailored to different geographic locations)
  4. Energy conservation and efficiency standards for the building sector in Tunisia
  5. A geothermal energy project in Kenya

There are still details and processes that need to be worked out as the NAMA program progresses, given that one size never fits all for climate mitigation and renewable energy generation. But I really like the idea of locally developed projects that suit the challenges different countries face being implemented on the ground, supported at a high level from the UNFCCC.