Stinking Hot Down Under

The numbers are in: 2013 was the hottest year on record in Australia since records began.

WHO: Will Steffen, Australian National University, Canberra Australia

WHAT: A report on how many heat records were broken in Australia last year

WHEN: January 2014

WHERE: The Climate Council website

TITLE: Off the Charts: 2013 Australia’s Hottest Year (open access)

Last week in Australia it was stinking hot. I was texting with my brother (who is doing a PhD in Meteorology so is also a massive nerd like me) about the heatwave forecast and we came up with a new term for what an overnight minimum temperature should be called when it’s too high. We decided that an overnight low of 28.6oC should be called a ‘lower maximum’ because that’s too hot to sleep in.

Unfortunately, this is the new normal for Australia, which has just been shown in excellent infographic form by the Australian Climate Council. It was a banner year for Australia last year breaking all kinds of heat records and having the hottest average temperature since record keeping started in 1910.


It looks pretty, but it’s so hot the sand burns your feet. Mornington Peninsula, Vic (photo: Amy Huva)

It looks pretty, but it’s so hot the sand burns your feet. Mornington Peninsula, Vic (photo: Amy Huva)

Now, I know we Australians are a competitive people who always like to win, but breaking these records are not so much fun.

Nationally, the records broken were:

  •  Highest average temperature across the country 1.20oC higher than the 1961-90 baseline years
  • Highest mean maximum temperature across the country 1.45oC above the baseline years
  • Mean minimum temperature across the country of 0.94oC above baseline years
  • Hottest January on record
  • Hottest summer on record (Dec 2012-Feb 2013)
  • Hottest winter day on record – August 31st 29.92oC
  • Hottest September on record of 2.75oC above baseline
  • Hottest spring on record
  • Hottest December on record

Locally, some of the notable records were:

  • South Australia broke their spring monthly average temperature record by 5.39oC
  • New South Wales broke their spring monthly average temperature record by 4.68oC
  • Alice Springs had their hottest October day ever of 42.6oC
  • Canberra’s October was 2.5oC above average
  • West Kimberly in Western Australia was a shocking 4oC above average for October

Sea Surface Temperatures were record highest for January and February 2013 and of the 21 days Australia has ever had with a country-wide average temperature above 39oC there were 8 of them in 2013 and 7 of them happened consecutively in January 2013! Remember in the news when Australia had to create a new colour on their temperature maps? That was then.

Even worse, this extreme heat was not pumped up with the influence of El Niño, which normally makes years warmer. The year had no strong El Niño or La Niña effect, so it was a climate-changed year.

Since 1950, the number of heat records has beaten the cold records in Australia at a rate of 3:1 and in true Australian style; we’ve exceeded expectations and broken all kinds of records. This is the new normal, and it’s only going to get worse unless we stop burning carbon.

Infographic by the Climate Council.

Infographic by the Climate Council.

100% Australian Renewable

What does 100% renewable electricity for the whole of Australia look like?

WHO: The Australian Energy Market Operator, commissioned by the Australian Federal Government

WHAT: Modelling for what a 100% renewable national electricity grid for Australia would look like.

WHEN: July 2013

WHERE: Online at the Department of Climate Change website


The Australian Department of Climate Change (yes, they have one!) commissioned the Australian Energy Market Operator in conjunction with CSIRO and ROAM Consulting to model what a national energy market would look like in 2030 and 2050 with 100% renewable electricity. Oh, and when they say ‘national’ they mean the more densely populated East Coast of the country (sorry WA and NT…)

The ‘national’ energy market (from paper)

The ‘national’ energy market (from paper)

They looked at two different scenarios – the first one was rapid deployment of renewable technology with moderate electricity demand growth (ie. including energy efficiency gains), and the second one was moderate deployment of renewable technology with high demand growth (no efficiency gains).

They ran both scenarios for getting our act together by 2030 and procrastinating until 2050 to see what might happen.

Given that this is a government document, it comes with many caveats (of course!). There are uncertainties (always); CSIRO says bioenergy is feasible, other groups say it’s not that feasible. The costs don’t include transitional factors (and change over time), the costs of land acquisition or stranded fossil fuel assets and infrastructure. Phew.

They also pointed out the obvious (someone has to say it I guess) that because this is looking at 100% renewable electricity it does not look at nuclear, natural gas or coal with carbon capture and storage. This is a fossil free zone people!

Ok, so what did they look at? They took data from the 2012 Australian Technology Assessment by the Australian Government Bureau of Resources and Energy Economics, and using that looked at what demand might look like in 2030 and 2050, and calculated the approximate costs.

Their findings in a nutshell are that a renewable system needs more storage (you can’t put solar in a pile like coal to burn later), is a more diverse and distributed system, needs an expanded transmission network and will be primarily driven in Australia by solar.

Depending on when Australia does it, it will cost somewhere between $219billion and $332billion dollars to build. No surprises that it’s cheaper to do it now, not to mention the stranded infrastructure and assets you save by starting the transition now. It’s cheaper after all not to build the coal terminal if you’re only going to use it for a short period of time.

Cost calculations for Scenario 1 (rapid deployment) and Scenario 2 (moderate deployment) (from paper)

Cost calculations for Scenario 1 (rapid deployment) and Scenario 2 (moderate deployment) (from paper)

They included energy consumption by electric vehicles (EVs) as well as the reduction of demand from rooftop solar. Interestingly, rooftop solar will dramatically change the makeup of a national energy grid. Currently the energy grid is summer peaking, which means more power is used in summer (for things like air conditioners when it’s seriously hot outside). With the uptake of rooftop solar, the grid will become winter peaking, because demand decreases in summer when everyone’s solar panels are doing great.

They ran the numbers to make sure a renewable power grid is as reliable as the current power grid, which is 99.998% reliable, and made sure the technologies they picked are either currently commercially available, or projected to be available soon.

They found that the capital costs are the main factor, given that once renewable power is installed; it costs almost nothing to run, because you don’t have to feed it fossil fuels to go. There are maintenance costs, but all power stations have maintenance costs.

Storage capacity wasn’t found to be economically viable with batteries once scaled up, given that a renewable grid needs 100-130% excess capacity. So storage would be in solar thermal, pumped hydro, biogas or biomass. The paper noted that geothermal (which Australia has a fair bit of) and biomass are similar to current standard baseload power in the way they can be used. Concentrated solar thermal is still a new technology that is being developed, so the scale up potential is not fully known yet, but it’s working well in Spain so far.

The space required to do this (to put the solar panels on and the wind turbines in) is between 2,400 – 5,000km2 which is small change in a country that has 7.7mill km2 and is mostly desert. So people won’t need to worry about wind turbines being put forcibly in their backyards, unless they want them (can I have one? They’re pretty!).

The most economic spread of renewables for transmission costs was a combination of remote with higher transmission costs and local with lower energy generation capacity.

Transmission possibilities (from paper)

Transmission possibilities (from paper)

The sticking point was meeting evening demand – when everyone comes home from work and turns the lights on and starts cooking dinner and plugs in their EV in the garage. The paper pointed out that work-based charging stations could promote charging your car during the day, but also ran scenarios where the demand shortfall could be met by biogas. This also applied for weeks where the storage capacity of the renewables was low (a week of low wind or a week of overcast weather).

Meeting demand shortfall by dispatching biogas and biomass (from paper)

Meeting demand shortfall by dispatching biogas and biomass (from paper)

Long story short, the future is hybrid renewable systems.

Breakdown of each technology for the different scenarios (from paper)

Breakdown of each technology for the different scenarios (from paper)

There is no single technology that can replace the energy density of fossil fuels, but a hybrid grid can. Diversifying both the technology and geography of the power grid will not only allow for 100% renewable generation, it will also build resilience.

As climate change extreme weather events become more common, having a distributed power system will avoid mass blackouts. It will be better for everyone’s health (living near a coal mine or a coal power station is NOT good for your health) and it will slow the rate at which we’re cooking the planet. Sounds good to me.

Your odds just shortened – Aussie Heatwaves

Climate change has increased the chance of extreme heatwaves in Australia by more than five times.

WHO: Sophie C. Lewis and David J. Karoly, School of Earth Sciences and ARC Centre of Excellence for Climate System Science, University of Melbourne, Victoria, Australia

WHAT: Looking at how much influence human-caused climate changes are pushing Australian summers into more extreme heat.

WHEN: July 2013

WHERE: Geophysical Research Letters (DOI: 10.1002/grl.50673), pre-publication release

TITLE: Anthropogenic contributions to Australia’s record summer temperatures of 2013 (subs. req)

There’s some interesting research happening at my alma mater Melbourne University these days (go Melbourne!). Even if you weren’t there to experience the extreme summer of 2012-13 in Australia, I’m sure you all remember the new colour that had to be created by the Australian Bureau of Meteorology for the weather maps when they maxed out above 50oC, or maybe the new rating for bushfires of ‘catastrophic’ for the climate fuelled fires that are beyond just an extreme risk?

Extreme Heat in January 2013 (Bureau of Meteorology)

Extreme Heat in January 2013 (Bureau of Meteorology)

So, to answer that age-old question ‘exactly how much have we messed this up?’ these researchers looked at the historical monthly weather patterns, weather patterns with natural forcing only and patterns with natural forcing and human forcing and matched those up with what actually happened.

They looked at the average monthly mean temperatures, maximum temperatures and minimum temperatures and found that the monthly extremes are increasing faster than the daily extremes – that is that there are more months that are more overall extreme than there are days of extremes.

The historical data they used for the experiment was from 1850 to 2005, with the baseline climate data (what they used as a reference for ‘normal’) being 1911-1940 because 30 years of weather data makes a climate!

They then created experiments for the data with natural forcing only, with natural and human forcing and ran exciting statistical functions like a probability density function with a kernel smoothing function that almost sounds like a super-cool popcorn maker.

To double check for error, they used the second hottest summer temperatures to make sure they could pick out the human influences from the randomness that can be the data, thereby deliberately making their findings conservative.

Once they’d run their fun popcorn-sounding numbers, they calculated the FAR – Fraction of Attributable Risk, which is exactly what it sounds like – the fraction of the risk of something happening that can attributed to a cause.

So if our ‘bad guy’ is human-induced climate change, how much can we blame it for the Australian Angry Summer of 2012-13? Well, a fair bit.

When they compared the numbers, they had 90% confidence that there was a 2.5 times increase in extreme heat from human influences. When they compared 1976-2005 data and extended the model out to 2020, the fraction increased again to a 5 times increased likelihood.

Extreme heat is ‘substantially more likely’ because of humans burning fossil fuels, which are pretty bold words from research scientists – when there’s a greater than 90% chance of something they say ‘very likely’ where most people would say ‘very certain’. In their research, events that should have been occurring 1-in-16 years naturally were happening 1-in-6 years with the historical numbers and 1-in-2 years with the model out to 2020. Ouch – summer just got more uncomfortable more often.

MTSOfan, flickr

MTSOfan, flickr

For me, the kicker came when the paper pointed out that the 2012-13 summer in Australia came in a La Niña year. Extreme heat events normally come with an El Niño year – La Niña years are cooler with more rain. So the fact that the Angry Summer occurred in a La Niña year is scary – sea surface temperatures were average or cooler in some places while at the same time the Bureau of Meteorology was scrambling for new map colours.

The paper concludes that their research supports ‘a clear conclusion that anthropogenic climate change had a substantial influence on the extreme summer heat over Australia’ and that these kinds of events are now five times as likely to occur. Welcome to summers on climate change?